首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resistive and magnetic measurements are made for La0.85Sr0.15MnO3. The dependence of resistivity on the applied magnetic field (10, 20, 30, and 50 kOe) and temperature (200–310 K) is analyzed using the s-d model and the obtained experimental data. The physical features that should be contained in models proposed to explain the colossal magnetoresistance of manganites with activation-type conductivity are determined. It is shown that the proposed mechanism associating the colossal magnetoresistance effect with phase separation into ferromagnetic and paramagnetic microregions near the Curie temperature has the necessary features.  相似文献   

2.
The electrical conductivity of the family of Ce x Sr1?x MnO3 (x = 0.50, 0.67) alloys is studied in magnetic fields of up to 0.6 T in the temperature range 78–300 K. The semiconductor-metal phase transition is observed in unannealed samples with x = 0.5 and in both annealed and unannealed samples with x = 0.67. All samples exhibit giant negative magnetoresistance. The temperature dependence of the giant negative magnetoresistance effect, the dependence of the electrical resistivity on the magnetic field at 78 K, and the time dependence of the magnetoresistance at 78 K are measured for the first time. Some samples reveal the properties of spin glass and strong ferromagnets. The reproducibility of the data obtained for these samples depends on the prehistory of the samples, specifically on the conditions of annealing and exposure to a magnetic field.  相似文献   

3.
This paper reports on a study of magnetic properties of ordered arrays of ?-In x Fe2 ? x O3 (x = 0.24) nanowires possessing a high room-temperature coercive force of 6 kOe. Lowering the temperature below 190 K brings about a sharp decrease of the coercive force and magnetization of nanowires driven by the magnetic phase transition from the ferrimagnetic into antiferromagnetic phase. The transition is accompanied by a decrease of the magnetic anisotropy constant, which accounts for the anomalous frequency dependence of the position of the maximum in the temperature dependence of dynamic magnetic susceptibility. In the low-temperature phase, a spin-flop transition in the magnetic field of 28 kOe has been observed at T = 2 K. Lines related to the high-temperature hard-magnetic and low-temperature phases have been identified in electron spin resonance spectra of the nanowires. A line lying near zero magnetic field and evolving from the nonresonant signal related to the microwave magnetoresistance of the sample has also been detected.  相似文献   

4.
The effect of magnetic inhomogeneity on magnetic, magnetocaloric, and transport properties of the colossal magnetoresistance manganites with first order ferromagnetic-to-paramagnetic phase transition is studied. The experiments were performed on the single-crystalline samples of La0.6Pr0.1Ca0.3MnO3. The inhomogeneity is described by the Curie temperature distribution function, which is found from the magnetization data. The temperature dependence of the magnetic field induced change in the entropy is shown to be determined by the distribution function and the shift of the transition temperature in a magnetic field. Similarly, magnetoresistance in the transition region is determined by the resistivity at H=0 and the shift of the transition temperature. The maximum entropy change as well as maximum magnetoresistance can be achieved in the magnetic field of order δTC/BM where δTC is the transition width and BM is the rate of change of the Curie temperature with magnetic field.Our approach to analysis of the effects of inhomogeneity is general and therefore can be used for all compounds with the first order magnetic phase transition.  相似文献   

5.
Zn1-xMnxO bulks have been prepared by the solid state reaction method. Zn vapor treatment has been carried out to adjust the carrier concentration. For the Zn treated Zn1-xMnxO bulks, analysis of the temperature dependence of resistance and the field dependence of magnetoresistance demonstrates that the bound magnetic polarons (BMPs) play an important role in the electrical transport behavior. The hopping of BMPs dominates the electrical conduction behavior when temperature is below 170 K. At low temperature,paramagnetic Zn1-xMnxO bulks show a large magnetoresistance effect,which indicates that the large magnetoresistance effect in transition-metal doped ZnO dilute magnetic semiconductors is independent of their magnetic states.  相似文献   

6.
(La0.7Sr0.3MnO3) x /(YBa2Cu3O7) y composites were prepared by mixing La0.7Sr0.3MnO3 powders and the sol–gel-derived YBa2Cu3O7 matrix, followed by high-temperature calcinations. Their structural, magnetic properties and magnetoresistance effect have been investigated systematically. A giant positive magnetoresistance (PMR) at low magnetic field is observed at low temperatures. In the case of (La0.7Sr0.3MnO3)1/(YBa2Cu3O7)9 composite, the PMR achieves 260% under a magnetic field of 5800 Oe. However, the PMR value sharply decreases with increasing temperature and no magnetoresistance effects are found above metal-insulator transition temperature. The enhancement of spin-dependent scattering at the grain boundaries should be responsible for the observed PMR. In addition, the temperature dependence of resistance under magnetic field could be explained by the competition between diamagnetism and paramagnetism in YBCO phase. At low temperature, the diamagnetism is predominant over paramagnetism and the interface scattering between LSMO grains is enhanced correspondingly. As a result, the low-temperature resistance increases and large PMR appears.  相似文献   

7.
Resonant and nonresonant absorption of microwave radiation is found to occur in germanium films implanted with manganese at concentrations of 2, 4, and 8 at %. Electron spin resonance is observed in two temperature ranges: (i) in the vicinity of the phase transition of Mn5Ge3 clusters to the ferromagnetic state at T = 295 K; and (ii) in the range of temperatures below 60 K, at which collective ordering of Mn spins in the crystal lattice and spin-wave resonance take place. The dependence of the nonresonant signal of the microwave magnetoresistance on the magnetic field exhibits a nonmonotonic behavior identical for the X and K microwave bands. An analysis of the field dependence of the microwave magnetoresistance makes it possible to separate two components of the derivative of the magnetoresistance: the quasi-linear Lorentzian component observed in strong fields and the negative exponential anisotropic component determined by spin-dependent scattering of charge carriers from magnetic impurities. The length of the phase relaxation of charge carriers is estimated to be 350 nm at T = 2 K and exceeds the thickness of the film (120 nm) and the sizes of clusters and precipitates (3–5 nm). In quasi-one-dimensional nanowires of the composition Ge:Mn at the same impurity concentrations, microwave magnetoresistance is absent. These facts suggest that conduction in thin films has a quasi-two-dimensional character and that the measured microwave magnetoresistance is associated with charge carriers in the crystal lattice rather than with impurity clusters.  相似文献   

8.
The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.  相似文献   

9.
The magneto-transport properties are investigated in metamagnetic CoMnSi0.88Ge0.12 alloy.By applying a magnetic field or increasing temperature,a metamagnetic phase transition from antiferromagnetic to ferromagnetic is observed in this alloy.Around the metamagnetic phase transition,CoMnSi0.88Ge0.12 alloy exhibits a large and negative magnetoresistance effect(~32%) under a magnetic field of 20 kOe(1 Oe = 79.5775 A/m),which is ascribed to the spin-dependent scattering of conduction electrons.  相似文献   

10.
We have measured the Hall effect and the transverse magnetoresistance in NbSe3 single crystals. In the liquid helium temperature range we observed an absolute negative magnetoresistance (NMR) — the value of the resistance under magnetic field being much lower than that at zero field — in NbSe3 single crystals with a thickness less than 5 μm with the magnetic field oriented in the (b, c) plane. We show that this NMR effect is observed in the magnetic field range in which the Hall constant changes its sign. The results are qualitatively explained by the change of the surface scattering contribution to the magnetoconductance in the magnetic field range near the Hall voltage zero crossing.  相似文献   

11.
Electrical resistivity and magnetoresistance of CeB6 single crystal have been measured in the temperature range from 1.3 to 300 K under the magnetic field up to 85 kOe. Three characteristic phases are distinguished consistently with other measurements. The Kondo like behaviour in the resistivity observed in the high temperature phase is fitted by the conventional form for the dilute Kondo state with the Kondo temperature TK = 5 ~ 10K and the unitarity limit resistivity ?u? 110 μΩ cm/Ce-atom. The negative magnetoresistance in the middle phase is stronger with increasing magnetic field and with decreasing temperature suggesting rapid destruction of the Kondo state. The magnetoresistance in the low temperature phase exhibits some anomalies suggesting sub-phases corresponding to several kinds of spin ordering.  相似文献   

12.
吴坚  张世远 《物理学报》2006,55(9):4893-4900
用溶胶-凝胶方法制备了1/mAg2O-La0.833K0.167MnO3 (LKMO/Ag)系列样品,其中1/m代表Ag2O和La0.833K0.167MnO3(LKMO)的摩尔比,m=32,16,8,4和2. 研究了此系列样品的结构、磁性和输运特性. X射线衍射实验表明,LKMO/Ag是一个非均匀的系统,样品由磁性的钙钛矿相LKMO和金属Ag相组成. 由于Ag相的加入,在室温条件下,磁电阻效应明显增强. 在300 K, 0.5 T磁场下,m=4样品的磁电阻可以达到32%;5.5 T磁场下,其磁电阻可达64%. 而单纯的LKMO样品在相同条件下的磁电阻分别为10%和35%. 在低温下,加Ag样品的磁电阻效应反而减小,样品含Ag越多,磁电阻效应越小. 用非本征磁电阻(包括自旋极化隧穿和自旋相关散射)和本征磁电阻在不同温区对总磁电阻的相对贡献对此系列样品的磁电阻现象作了定性的解释. 关键词: 自旋极化隧穿 自旋相关散射 低场磁电阻 高场磁电阻  相似文献   

13.
The transmission coefficient of films of Co51.5Al19.5O29, Co50.2Ti9.1O40.7, Co52.3Si12.2O35.5, and (Co0.4Fe0.6)48(MgF)52 ferromagnetic metal-insulator magnetic nanocomposites exhibiting tunneling magnetoresistance and the magnetorefractive effect for electromagnetic waves was studied in the frequency range 30–50 GHz. The transmission coefficient of the first two compositions varies strongly under an applied magnetic field, and its variation exhibits a linear correlation with the field dependence of magnetoresistance. For the other two compositions, the transmission coefficient does not depend on magnetic field. The data obtained are interpreted in terms of the concept of microwave spin-dependent tunneling.  相似文献   

14.
The electrical properties of and the magnetoresistive effect in RCu3Mn4O12 (R=rare-earth ion or Th) are studied. In all compounds of this series, the magnetoresistive effect amounts to 20% at liquid nitrogen temperature in the presence of a field of 0.9 T. An increase in the magnetoresistance with decreasing temperature and a high sensitivity to weak magnetic fields at low temperatures point to the intergranular nature of the effect. The magnetoresistance shows a peak in the vicinity of the Curie temperature TC. Based on the dependences of the magnetoresistance on an external magnetic field, it is assumed that the magnetoresistance peak near TC is related to the charge carrier scattering by magnetic inhomogeneities as in substituted orthomanganites. We believe that the magnetoresistance value near the magnetic ordering temperature depends on the synthesis conditions and the effect of the intergranular spacer on the transport properties of these compounds.  相似文献   

15.
16.
The electrical conductivity, magnetization, and magnetoresistance of manganites La1 − x Ag x MnO3 have been investigated in the temperature range 78–300 K. The samples have been synthesized by the sol-gel method. At room temperature, the magnetic field of 0.6 T has no effect on the electrical conductivity. As the temperature decreases, an abrupt jump is observed in the magnetization curve due to the semiconductor-metal phase transition. This transition hardly affects the temperature dependence of the resistance.  相似文献   

17.
The magnetoresistance and magnetization of single-crystal samples of rare-earth dodecaborides RB12 (R = Ho, Er, Tm, Lu) have been measured at low temperatures (1.8–35 K) in a magnetic field of up to 70 kOe. The effect of positive magnetoresistance that obeys the Kohler’s rule Δρ/ρ = f(ρ(0, 300 K)H/ρ(0, T)) is observed for the nonmagnetic metal LuB12. In the magnetic dodecaborides HoB12, ErB12, and TmB12, three characteristic regimes of the magnetoresistance behavior have been revealed: the positive magnetoresistance effect similar to the case of LuB12 is observed at T > 25 K; in the range T N T ≤ 15 K, the magnetoresistance becomes negative and depends quadratically on the external magnetic field; and, finally, upon the transition to the antiferromagnetic phase (T < T N ), the positive magnetoresistance is again observed and its amplitude reaches 150% for HoB12. It has been shown that the observed anomalies of negative magnetoresistance in the paramagnetic phase can be explained within the Yosida model of conduction electron scattering by localized magnetic moments. The performed analysis confirms the formation of spin-polaron states in the 5d band in the vicinity of rare-earth ions in paramagnetic and magnetically ordered phases of RB12 and makes it possible to reveal a number of specific features in the transformation of the magnetic structure of the compounds under investigation.  相似文献   

18.
Nominally electron doped antiferromagnetic tetragonal nonsuperconducting Nd2?xCe x CuO4+δ(x=0.12) has been shown to manifest strong angular dependence of the in-plane magnetoresistance on the orientation of the external magnetic field within the ab plane in many aspects similar to that observed in hole doped YBa2Cu3O7?δ and La2?xSrxCuO4. Specific fourfold angular magnetoresistance anisotropy amounting to several percents was observed in oxygen annealed films at low temperatures and in an external magnetic field up to 5.5 T. The strong temperature dependence and fourfold symmetry observed in our sample points to a specific role of rare-earth (Nd) ions in magnetoresistance anisotropy. At low temperature T = 1.4 K, we observed the unusual transformation of magnetoresistance response with increasing the external magnetic field, which seems to be a manifestation of a combined effect of a crossover between first and second order spin-flop transitions and a field-dependent rare-earth contribution to quasiparticle magnetotransport.  相似文献   

19.
Electrodeposition of CuCoNi alloys was performed in an acid-citrate medium. Nickel density parameter was varied in order to analyse its influence on the magnetoresistance. The structure and giant magneto-resistance (GMR) effect of CuCoNi alloys have been investigated. The maximum value for GMR ratio, at room temperature is 1% at a field of 12 kOe, and at 20 K is 2.1% at a field of 8.5 kOe for 3.1 Ni. The MR ratio of Cu100-y-x CoyNix alloys first increases and then decreases monotonically with increasing Ni content. The GMR and its dependence on magnetic field and temperature were discussed.   相似文献   

20.
A simple model of phase separation is used to study the magnetoresistance of manganites in the nonmetallic state. It is assumed that the phase separation corresponds to the emergence of small ferromagnetic metallic droplets (ferrons) in a nonconducting antiferromagnetic or paramagnetic medium, with the metallic phase concentration being far from the percolation threshold. The charge transfer is accomplished by way of electron jumps between droplets. The magnetoresistance in such a system is defined both by the variation of the volume of the metal phase and by the dependence of the probabilities of electron transitions on the magnitude of the magnetic field. It is demonstrated that, in the region of low magnetic fields, the magnetoresistance is quadratic with respect to the field and decreases with temperature by the T ?n law, where n takes values from 1 to 5 depending on the correlation between the parameters. In the high-field limit, the magnetoresistance increases abruptly with the volume of the metal phase. The crossover of the field dependence from quadratic to a stronger one may be accompanied by the emergence of a platean in the magnetoresistance. The correlation between the obtained results and the available experimental data is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号