首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.  相似文献   

2.
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.  相似文献   

3.
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.  相似文献   

4.
Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.  相似文献   

5.
This study investigated the in vitro inhibitory potential of different solvent extracts of leaves of Barbeya oleoides on key enzymes related to type 2 diabetes mellitus (α-glucosidase and α-amylase) in combination with an aggregation assay (using 0.01% Triton X-100 detergent) to assess the specificity of action. The methanol extract was the most active in inhibiting α-glucosidase and α-amylase, with IC50 values of 6.67 ± 0.30 and 25.62 ± 4.12 µg/mL, respectively. However, these activities were significantly attenuated in the presence of 0.01% Triton X-100. The chemical analysis of the methanol extract was conducted utilizing a dereplication approach combing LC-ESI-MS/MS and database searching. The chemical analysis detected 27 major peaks in the negative ion mode, and 24 phenolic compounds, predominantly tannins and flavonol glycosides derivatives, were tentatively identified. Our data indicate that the enzyme inhibitory activity was probably due to aggregation-based inhibition, perhaps linked to polyphenols.  相似文献   

6.
Many plants that are commonly used in folk medicine have multidirectional biological properties confirmed by scientific research. One of them is Aerva lanata (L.) Juss. (F. Amaranthaceae). It is widely used, but there are very few scientific data about its chemical composition and pharmacological activity. The aim of the present study was to investigate the chemical composition of phenolic acid (PA)-rich fractions isolated from methanolic extracts of A. lanata (L.) Juss. herb using the liquid/liquid extraction method and their potential antioxidant, anti-inflammatory, and anti-diabetic properties. The free PA fraction (FA), the PA fraction (FB) released after acid hydrolysis, and the PA fraction (FC) obtained after alkaline hydrolysis were analysed using liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS). The phenolic profile of each sample showed a high concentration of PAs and their presence in A. lanata (L.) Juss. herb mainly in bound states. Thirteen compounds were detected and quantified in all samples, including some PAs that had not been previously detected in this plant species. Bioactivity assays of all fractions revealed high 2,2-diphenyl-1-picrylhydrazyl (DPPH) (2.85 mM Trolox equivalents (TE)/g) and 2,2-azino-bis-3(ethylbenzthiazoline-6-sulphonic acid) (ABTS•+) (2.88 mM TE/g) scavenging activity. Fraction FB definitely exhibited not only the highest antiradical activity but also the strongest xanthine oxidase (XO) (EC50 = 1.77 mg/mL) and lipoxygenase (LOX)(EC50 = 1.88 mg/mL) inhibitory potential. The fraction had the best anti-diabetic properties, i.e., mild inhibition of α-amylase (EC50 = 7.46 mg/mL) and strong inhibition of α-glucosidase (EC50 = 0.30 mg/mL). The activities of all analysed samples were strongly related to the presence of PA compounds and the total PA content.  相似文献   

7.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

8.
Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and β-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and β-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and β-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and β-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and β-amyrin. Furthermore, this was the first study indicating that α-amyrin and β-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.  相似文献   

9.
Anti-diabetic compounds from natural sources are now being preferred to prevent or treat diabetes due to adverse effects of synthetic drugs. The decoction of Muntingia calabura leaves was traditionally consumed for diabetes treatment. However, there has not been any published data currently available on the processing effects on this plant’s biological activity and phytochemical profile. Therefore, this study aims to evaluate the effect of three drying methods (freeze-drying (FD), air-drying (AD), and oven-drying (OD)) and ethanol:water ratios (0, 50, and 100%) on in vitro anti-diabetic activities of M. calabura leaves. In addition, an ultrahigh-performance-liquid chromatography–electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method was used to characterize the metabolites in the active extract. The FD M. calabura leaves, extracted with 50% ethanol, is the most active extract that exhibits a high α-glucosidase and α-amylase inhibitory activities with IC50 values of 0.46 ± 0.05 and 26.39 ± 3.93 µg/mL, respectively. Sixty-one compounds were tentatively identified by using UHPLC-ESI-MS/MS from the most active extract. Quantitative analysis, by using UHPLC, revealed that geniposide, daidzein, quercitrin, 6-hydroxyflavanone, kaempferol, and formononetin were predominant compounds identified from the active extract. The results have laid down preliminary steps toward developing M. calabura leaves extract as a potential source of bioactive compounds for diabetic treatment.  相似文献   

10.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

11.
Ipomoea carnea Jacq. is an important folklore medicinal plant, assessed for its underexplored biological potential. Antioxidant, cytotoxic, antiproliferative and polyphenolic profile of whole plant was evaluated using various techniques. Maximum extract recovery (29% w/w), phenolic [13.54 ± 0.27 μg GAE/mg dry weight (DW)] and flavonoid (2.11 ± 0.10 μg QE /mg DW) content were recorded in methanol-distilled water (1:1) flower extract. HPLC-DAD analysis quantified substantial amount of six different polyphenols ranging from 0.081 to 37.95 μg/mg extract. Maximum total antioxidant and reducing potential were documented in methanol-distilled water and acetone-distilled water flower extracts (42.62 ± 0.47 and 24.38 ± 0.39 μg AAE/mg DW) respectively. Ethanol-chloroform root extract manifested highest free radical scavenging (IC50 of 61.22 μg/mL) while 94.64% of the extracts showed cytotoxicity against brine shrimps. Ethanol leaf extract exhibited remarkable activity against THP-1 cell line (IC50 = 8 ± 0.05 μg/mL) and protein kinases (31 mm phenotype bald zone).  相似文献   

12.
Medicinal plants from Chad grow under special climatic conditions in between the equatorial forest of Central Africa and the desert of North Africa and are understudied. Three medicinal plants from Chad (T. diversifolia, P. Biglobosa and C. Febrifuga) were evaluated for their phenolic composition, antioxidant and enzyme inhibition activities. The total phenolic composition varied from 203.19 ± 0.58 mg GAE/g DW in the ethyl acetate extract of P. biglobosa, to 56.41 ± 0.89 mg GAE/g DW in the methanol extract of C. febrifuga while the total flavonoid content varied from 51.85 ± 0.91 mg QE/g DW in the methanol extract of P. biglobosa to 08.56 ± 0.25 mg QE/g DW in the methanol extract of C. febrifuga. HPLC-DAD revealed that rutin, gallic acid and protocatechuic acid were the most abundant phenolics in T. diversifolia, P. Biglobosa and C. Febrifuga respectively. The antioxidant activity assayed by five different methods revealed very good activity especially in the DPPH?, ABTS?+ and CUPRAC assays where the extracts were more active than the standard compounds used. Good inhibition was exhibited against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with methanol (IC50: 15.63 ± 0.72 µg/mL), ethyl acetate (IC50: 16.20 ± 0.67 µg/mL) extracts of P. biglobosa, and methanol (IC50: 21.53 ± 0.65 µg/mL) and ethyl acetate (IC50: 30.81 ± 0.48 µg/mL) extracts of T. diversifolia showing higher inhibition than galantamine (IC50: 42.20 ± 0.44 µg/mL) against BChE. Equally, good inhibition was shown on α-amylase and α-glucosidase. On the α-glucosidase, the ethyl acetate (IC50 = 12.47 ± 0.61 µg/mL) and methanol extracts (IC50 = 16.51 ± 0.18 µg/mL) of P. biglobosa showed higher activity compared to the standard acarbose (IC50 = 17.35 ± 0.71 µg/mL) and on α-amylase, the ethyl acetate (IC50 = 13.50 ± 0.90 µg/mL) and methanol (IC50 = 18.12 ± 0.33 µg/mL) extracts of P. biglobosa showed higher activity compared to acarbose (IC50 = 23.84 ± 0.25 µg/mL). The results indicate that these plants are good sources of antioxidant phenolics and can be used to manage oxidative stress linked illnesses such as Alzheimer’s disease and diabetes.  相似文献   

13.
Mint species (Lamiaceae family) have been used as traditional remedies for the treatment of several diseases. In this work, we aimed to characterize the biological activities of the total phenolic and flavonoid contents of Mentha pulegium L. extracts collected from two different regions of Tunisia. The highest amounts of total phenols (74.45 ± 0.01 mg GAE/g DW), flavonoids (28.87 ± 0.02 mg RE/g DW), and condensed tannins (4.35 ± 0.02 mg CE/g DW) were found in the Bizerte locality. Methanolic leaf extracts were subjected to HPLC-UV analysis in order to identify and quantify the phenolic composition. This technique allowed us to identify seven phenolic compounds: two phenolic acids and five flavonoid compounds, such as eriocitrin, hesperidin, narirutin, luteolin, and isorhoifolin, which were found in both extracts with significant differences between samples collected from the different regions (p < 0.05). Furthermore, our results showed that the methanolic extract from leaves collected from Bizerte had the highest antioxidant activities (DPPH IC50 value of 16.31 μg/mL and 570.08 μmol Fe2+/g, respectively). Both extracts showed high radical-scavenging activity as well as significant antimicrobial activity against eight tested bacteria. The highest antimicrobial activities were observed against Gram-positive bacteria with inhibition zone diameters and MIC values ranging between 19 and 32 mm and 40 and 160 µg/mL, respectively. Interestingly, at 10 μg/mL, the extract had a significant effect on cell proliferation of U87 human glioblastoma cells. These findings open perspectives for the use of Mentha pulegium L. extract in green pharmacy, alternative/complementary medicine, and natural preventive therapies for the development of effective antioxidant, antibacterial, and/or antitumoral drugs.  相似文献   

14.
The aims of this study were to evaluate the antioxidant properties, to investigate the content of major secondary metabolites in Ginkgo biloba cell cultures, and to determine the change in the production of phenolic acids by adding phenylalanine to the culture medium. Three in vitro methods, which depend on different mechanisms, were used for assessing the antioxidant activity of the extract: 1,1-diphenyl-2-picrylhydrazil (DPPH), reducing power and Fe2+ chelating activity assays. The extract showed moderate activity both in the DPPH and in the reducing power assays (IC50 = 1.966 ± 0.058 mg/mL; ASE/mL = 16.31 ± 1.20); instead, it was found to possess good chelating properties reaching approximately 70% activity at the highest tested dose. The total phenolic, total flavonoid, and condensed tannin content of G. biloba cell culture extract was spectrophotometrically determined. The phenolic acid content was investigated by RP-HPLC, and the major metabolites—protocatechuic and p-hydroxybenzoic acids—were isolated and investigated by 1H NMR. The results showed that phenylalanine added to G. biloba cell cultures at concentrations of 100, 150, and 200 mg/150 mL increased the production of phenolic acids. Cultures that were grown for 3 weeks and collected after 4 days of phenylalanine supplementation at high concentration showed maximal content of phenolic acids (73.76 mg/100 g DW).  相似文献   

15.
In the present study, the influence of five drying techniques on the structural and biological properties of polysaccharides from lotus leaves (LLPs) was investigated. Results revealed that the yields, contents of basic chemical components, molecular weights, and molar ratios of compositional monosaccharides of LLPs varied by different drying technologies. Low molecular weight distributions were observed in polysaccharides obtained from lotus leaves by hot air drying (LLP-H), microwave drying (LLP-M), and radio frequency drying (LLP-RF), respectively. The high contents of bound polyphenolics were measured in LLP-H and LLP-M, as well as polysaccharides obtained from lotus leaves by vacuum drying (LLP-V). Furthermore, both Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of LLPs were similar, indicating that drying technologies did not change their basic chemical structures. Besides, all LLPs exhibited obvious biological properties, including in vitro antioxidant capacities, antiglycation activities, and inhibitory effects on α-glucosidase. Indeed, LLP-H exhibited higher 2,2-azidobisphenol (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability (IC50 values, LLP-H, 0.176 ± 0.004 mg/mL; vitamin C, 0.043 ± 0.002 mg/mL) and 2,2-diphenyl-1-(2,4,6-trinitrate phenyl) hydrazine radical scavenging ability (IC50 values, LLP-H, 0.241 ± 0.007 mg/mL; butylated hydroxytoluene, 0.366 ± 0.010 mg/mL) than others, and LLP-M exerted stronger antiglycation (IC50 values, LLP-M, 1.023 ± 0.053 mg/mL; aminoguanidine, 1.744 ± 0.080 mg/mL) and inhibitory effects on α-glucosidase (IC50 values, LLP-M, 1.90 ± 0.02 μg/mL; acarbose, 724.98 ± 16.93 μg/mL) than others. These findings indicate that both hot air drying and microwave drying can be potential drying techniques for the pre-processing of lotus leaves for industrial applications.  相似文献   

16.
Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.  相似文献   

17.
Carrageenan is an anionic sulfated polysaccharide that accounts for a high content of red seaweed Eucheuma gelatinae. This paper focused on the extraction, optimization, and evaluation of antioxidant activity, rheology characteristics, and physic-chemistry characterization of β-carrageenan from Eucheuma gelatinae. The extraction and the optimization of β-carrageenan were by the maceration-stirred method and the experimental model of Box-Behken. Antioxidant activity was evaluated to be the total antioxidant activity and reducing power activity. The rheology characteristics of carrageenan were measured to be gel strength and viscosity. Physic-chemistry characterization was determined, including the molecular weight, sugar composition, function groups, and crystal structure, through GCP, GC-FID, FTIR, and XRD. The results showed that carrageenan possessed antioxidant activity, had intrinsic viscosity and gel strength, corresponding to 263.02 cps and 487.5 g/cm2, respectively. Antioxidant carrageenan is composed of rhamnose, mannose, glucose, fucose, and xylose, with two molecular weight fractions of 2.635 × 106 and 2.58 × 106 g/mol, respectively. Antioxidant carrageenan did not exist in the crystal. The optimization condition of antioxidant carrageenan extraction was done at 82.35 °C for 115.35 min with a solvent-to-algae ratio of 36.42 (v/w). At the optimization condition, the extraction efficiency of carrageenan was predicted to be 87.56 ± 5.61 (%), the total antioxidant activity and reducing power activity were predicted to 71.95 ± 5.32 (mg ascorbic acid equivalent/g DW) and 89.84 ± 5.84 (mg FeSO4 equivalent/g DW), respectively. Purity carrageenan content got the highest value at 42.68 ± 2.37 (%, DW). Antioxidant carrageenan from Eucheuma gelatinae is of potential use in food and pharmaceuticals.  相似文献   

18.
The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified—three and two in NIM and PIM, respectively—as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds—dihydrocatalpol and leucosceptoside A—from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus.  相似文献   

19.
The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.  相似文献   

20.
The present study investigated the antidiabetic properties of the extracts and fractions from leaves and stem bark of M. glabra based on dipeptidyl peptidase-4 (DPP-4) and α-Amylase inhibitory activity assays. The chloroform extract of the leaves was found to be most active towards inhibition of DPP-4 and α-Amylase with IC50 of 169.40 μg/mL and 303.64 μg/mL, respectively. Bioassay-guided fractionation of the leaves’ chloroform extract revealed fraction 4 (CF4) as the most active fraction (DPP-4 IC50: 128.35 μg/mL; α-Amylase IC50: 170.19 μg/mL). LC-MS/MS investigation of CF4 led to the identification of trans-decursidinol (1), swermirin (2), methyl 3,4,5-trimethoxycinnamate (3), renifolin (4), 4′,5,6,7-tetramethoxy-flavone (5), isorhamnetin (6), quercetagetin-3,4′-dimethyl ether (7), 5,3′,4′-trihydroxy-6,7-dimethoxy-flavone (8), and 2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one (9) as the major components. The computational study suggested that (8) and (7) were the most potent DPP-4 and α-Amylase inhibitors based on their lower binding affinities and extensive interactions with critical amino acid residues of the respective enzymes. The binding affinity of (8) with DPP-4 (−8.1 kcal/mol) was comparable to that of sitagliptin (−8.6 kcal/mol) while the binding affinity of (7) with α-Amylase (−8.6 kcal/mol) was better than acarbose (−6.9 kcal/mol). These findings highlight the phytochemical profile and potential antidiabetic compounds from M. glabra that may work as an alternative treatment for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号