首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
Supercritical water fluidized bed is a new reactor concept for biomass gasification. In this paper, an experimental study on the hydrodynamics of a supercritical water fluidized bed was conducted. The frictional pressure drops of a fixed bed and a fluidized bed were measured for a temperature ranging from 633 to 693 K and pressure ranging from 23 to 27 MPa. The results show that the Ergun formula for calculating the frictional pressure drop of a fixed bed can still be applied in supercritical water conditions. The average deviation between Ergun formula and experiment results is 13.3%. A predicting correlation for the minimum fluidization velocity in a supercritical water fluidized bed was obtained based on the experimental results of a fixed bed and the fluidized bed pressure drop. The average error between the correlation and experiment results was about 3.1%. The results in this paper are useful for the design of SCW fluidized bed.  相似文献   

2.
Some hydrodynamic aspects of 3-phase inverse fluidized bed   总被引:2,自引:0,他引:2  
Hydrodynamics of 3-phase inverse fluidized bed is studied experimentally using low density particles for different liquid and gas velocities. The hydrodynamic characteristics studied include pressure drop, minimum liquid and gas fluidization velocities and phase holdups. The minimum liquid fluidization velocity determined using the bed pressure gradient, decreases with increase in gas velocity. The axial profiles of phase holdups shows that the liquid holdup increases along the bed height, whereas the solid holdup decreases down the bed. However, the gas holdup is almost uniform in the bed.  相似文献   

3.
The dynamic characteristics of a gas-solid fluidized bed with different rod promoters have been investigated in terms of bed expansion and fluctuation, minimum fluidization velocity and distributor-to-bed pressure drop ratio at minimum fluidization velocity. Experimentation based on statistical design has been carried out and model equations using factorial design of experiments have been developed for the above mentioned quantities for a promoted gas-solid fluidized bed. The model equations have been tested with additional experimental data. The system variables include four types of rod promoters of varying blockage volume, bed particles of four sizes and four initial static bed heights. A comparison between the predicted values of the output variables using the proposed model equation with their corresponding experimental ones shows fairly good agreement.  相似文献   

4.
Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could coexist and sharp variations in pressure drop could occur, thereby giving rise to a noticeable pressure drop-flow rate hysteresis loop under incipient fluidization conditions. To explore these unique properties, several experiments were carried out using homogeneous, well-mixed, ternary mixtures with three dif- ferent particle sizes at varying composition in gas-solid conical fluidized beds with varying cone angles. The hydrodynamic characteristics determined include the minimum fluidization velocity, bed fluctuation, and bed expansion ratios. The dependence of these quantities on average particle diameter, mass fraction of the fines in the mixture, initial static bed height, and cone angle is discussed. Based on dimensional analysis and factorial design, correlations are developed using the system parameters, i.e. geometry of the bed (cone angle), particle diameter, initial static bed height, density of the solid, and superficial velocity of the fluidizing medium. Experimental values of minimum fluidization velocity, bed fluctuation, and bed expansion ratios were found to agree well with the developed correlations.  相似文献   

5.
This paper reports on the hydrodynamics of a bubble-induced inverse fluidized bed reactor, using a nanobubble tray gas distributor, where solid particles are fluidized only by an upward gas flow. Increasing the gas velocity, the fixed layer of particles initially packed at the top of the liquid starts to move downwards, due to the rise of bubbles in this system, and then gradually expands downwards until fully suspended. The axial local pressure drops and standard deviation were examined to delineate the flow regime comprehensively under different superficial gas velocities. Four flow regimes (fixed bed regime, initial fluidization regime, expanded regime, and post-homogeneous regime) were observed and three transitional gas velocities (the initial fluidization velocity, minimum fluidization velocity, and homogeneous fluidization velocity) were identified to demarcate the flow regime. Three correlations were developed for the three transitional velocities. As the fine bubbles generated from the nanobubble tray gas distributor are well distributed in the entire column, the bed expansion process of the particles is relatively steady.  相似文献   

6.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

7.
The fluidization behavior of ZnO nano-particles in magnetic fluidized bed (MFB) by adding coarse magnetic particles was investigated, followed by the co-fluidization of mixtures of ZnO and SiO2 nano-particles. For such co-fluidization, bed expansion was found to change smoothly with gas velocity through a range of stable operation. By measuring the bed expansion ratio and pressure drop, a stability diagram for the mixture in MFB was obtained. Within this stable operation range, with increasing gas velocity the pressure drop hardly changes as the bed expands, up to an expansion ratio of more than 4.  相似文献   

8.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K).

The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height.

The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height.  相似文献   


9.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

10.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard deviation and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi-industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uc. The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the fluidized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

11.
12.
Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process,because it is related to the CO_2 capture efficiency of the system.In a circulating fluidized bed(CFB),the riser inventory is normally calculated from the riser pressure drop;however,the friction and the acceleration phenomena may have a significant influence on the total riser pressure drop.Therefore,deviation may occur in the calculation from the actual mass.For this reason the magnitude of the friction and the acceleration pressure drop in the entire riser is studied in small-scale risers.Two series of studies were performed:the first one in a scaled cold model riser of the 10 kW_(th)facility,and the second one in the 10kW_(th) fluidized bed riser under process conditions.The velocities were chosen to comply with the fluidization regimes suitable for the calcium looping process,namely,the turbulent and the fast.In cold-model experiments in a low-velocity turbulent fluidization regime,the actual weight(static pressure drop) of the particles is observed more than the weight calculated from a recorded pressure drop.This phenomenon is also repeated in pilot plant conditions.In the cold-model setup,the friction and acceleration pressure drop became apparent in the fast fluidization regime,and increased as the gas velocity rose.Within calcium looping conditions in the pilot plant operation,the static pressure drop was observed more than the recorded pressure drop.Therefore,as a conservative approach,the influence of friction pressure drop may be neglected while calculating the solid inventory of the riser.The concept of transit inventory is introduced as a fraction of total inventory,which lies in freefall zones of the CFB system.This fraction increases as gas velocity rises.  相似文献   

13.
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed (GDFB) using particles of different diameters and densities were investigated in detail. Rising gas bubbles cause a liquid upflow in the riser portion, enabling a liquid downflow that causes an inverse fluidization in the downer portion. Four flow regimes (fixed bed regime, initial fluidization regime, complete fluidization regime, and circulating fluidization regime) and three transition gas velocities (initial fluidization gas velocity, minimum fluidization gas velocity, and circulating fluidization gas velocity) were identified via visual observation and by monitoring the variations in the pressure drop. The axial local bed voidage (ε) of the downer first decreases and then increases with the increase of the gas velocity. Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser, but decrease with the particle loading. An empirical formula was proposed to successfully predict the Richardson-Zaki index “n”, and the predicted ε obtained from this formula has a ±5% relative error when compared with the experimental ε.  相似文献   

14.
An innovative horizontal swirling fluidized bed (HSFB) with a rectangular baffle in the center of an air distributor and three layers of horizontal secondary air nozzles located at each corner of fluidized bed was developed. Experiments on heat transfer characteristics were conducted in a cold HSFB test model. Heat transfer coefficients between immersed tubes and bed materials in the HSBF were measured with the help of a fast response heat transfer probe. The influences of fluidization velocity, particle size of bed materials, measurement height, probe orientation, and secondary air injection, etc. on heat transfer coefficients were intensively investigated. Test results indicated that heat transfer coefficients increase with fluidization velocity, and reach their maximum values at 1.5-3 times of the minimum fluidization velocity. Heat transfer coefficients are variated along the circumference of the probe, and heat transfer coefficients on the leeward side of the probe are larger than that on the windward side of the probe. Heat transfer coefficients decrease with increasing of measurement height; heat transfer coefficients of the longitudinal probe are larger than that of the transverse probe. The proper secondary air injection and particle size of bed materials can generate a preferred hydrodynamics in the dense zone and enhance heat transfer in a HSFB.  相似文献   

15.
A non-intrusive vibration monitoring technique was used to study the hydrodynamics of a gas–solid fluidized bed. Experiments were carried out in a 15 cm diameter fluidized bed using 226, 470 and 700 μm sand particles at various gas velocities, covering both bubbling and turbulent regimes. Auto correlation function, mutual information function, Hurst exponent analysis and power spectral density function were used to analyze the fluidized bed hydrodynamics near the transition point from bubbling to turbulent fluidization regimes. The first pass of the autocorrelation function from one half and the time delay at which it becomes zero, and also the first minimum of the mutual information, occur at a higher time delay in comparison to stochastic systems, and the values of time delays were maximum at the bubbling to turbulent transition gas velocity. The maximum value of Hurst exponent of macro structure occurred at the onset of regime transition from bubbling to turbulent. Further increase in gas velocity after that regime transition velocity causes a decrease in the Hurst exponent of macro structure because of breakage of large bubbles to small ones. The results showed these methods are capable of detecting the regime transition from bubbling to turbulent fluidization conditions using vibration signals.  相似文献   

16.
Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process, because it is related to the CO2 capture efficiency of the system. In a circulating fluidized bed (CFB), the riser inventory is normally calculated from the riser pressure drop; however, the friction and the acceleration phenomena may have a significant influence on the total riser pressure drop. Therefore, deviation may occur in the calculation from the actual mass. For this reason the magnitude of the friction and the acceleration pressure drop in the entire riser is studied in small-scale risers. Two series of studies were performed: the first one in a scaled cold model riser of the 10 kWth facility, and the second one in the 10 kWth fluidized bed riser under process conditions. The velocities were chosen to comply with the fluidization regimes suitable for the calcium looping process, namely, the turbulent and the fast. In cold-model experiments in a low-velocity turbulent fluidization regime, the actual weight (static pressure drop) of the particles is observed more than the weight calculated from a recorded pressure drop. This phenomenon is also repeated in pilot plant conditions. In the cold-model setup, the friction and acceleration pressure drop became apparent in the fast fluidization regime, and increased as the gas velocity rose. Within calcium looping conditions in the pilot plant operation, the static pressure drop was observed more than the recorded pressure drop. Therefore, as a conservative approach, the influence of friction pressure drop may be neglected while calculating the solid inventory of the riser. The concept of transit inventory is introduced as a fraction of total inventory, which lies in freefall zones of the CFB system. This fraction increases as gas velocity rises.  相似文献   

17.
In the processes involving the movement of solid particles, acoustic emissions are caused by particle friction, collision and fluid turbulence. Particle behavior can therefore be monitored and characterized by assessing the acoustic emission signals. Herein, extensive measurements were carried out by microphone at different superficial gas velocities with different particle sizes. Acoustic emission signals were processed using statistical analysis from which the minimum fluidization velocity was determined from the variation of standard deviation, skewness and kurtosis of acoustic emission signals against superficial gas velocity. Initial minimum fluidization velocity, corresponding to onset of fluidization of finer particles in the solids mixture, at which isolated bubbles occur, was also detected by this method. It was shown that the acoustic emission measurement is highly feasible as a practical method for monitoring the hydrodynamics of gas–solid fluidized beds.  相似文献   

18.
Fluidized Carbon Bed Cooling (FCBC) is an innovative investment casting process for directional solidification of superalloy components. It takes advantage of a fluidized bed with a base of small glassy carbon beads for cooling and other low-density particles that form an insulating layer by floating to the bed surface. This so-called “Dynamic Baffle” protects the fluidized bed from the direct heat input from the high-temperature heating zone and provides the basis for an improved bed microstructure. The prerequisites for a stable casting process are stable fluidization conditions where neither collapse of the bed nor particle blow out at excessive bubble formation occur.This work aimed to investigate the fluidization behavior of spherical carbon bed material in argon and air at temperatures between 20 to 350 °C. Systematic studies at reduced pressures using the FCBC prototype device were performed to understand the stable fluidization conditions at all stages of the investment casting process. The particle shape factor and size distribution characterization and the measurement of the powder’s minimum fluidization velocity and bed voidage show that this material can be fully utilized as a cooling and buoyancy medium during the FCBC process.  相似文献   

19.
Fluidization data acquired, processed and printed out inone integral instrument: pressure drop versus gas velocity fluctuating height versus gas velocity minimum fluidization velocity quality of fluidization expressed in terms of bed collapsing curves: rate of bubble escape rate of particulate sedimentation in dense phase rate of consolidation of packed solids printout of dimensionless subsidence time  相似文献   

20.
The heat transfer characteristics around a single horizontal heated tube immersed in air fluidized bed was investigated, to clarify the mechanism of heat transfer in a fluidized bed heat exchanger. The local heat transfer coefficient around the tube was measured at various fluidization velocities and five different solid particles. The experimental values of the local heat transfer coefficient at the minimum fluidization velocity condition were correlated with the particle size in two empirical equations. The predicted results were in good agreement with the experiment data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号