首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with boundary‐value methods (BVMs) for ordinary and neutral differential‐algebraic equations. Different from what has been done in Lei and Jin (Lecture Notes in Computer Science, vol. 1988. Springer: Berlin, 2001; 505–512), here, we directly use BVMs to discretize the equations. The discretization will lead to a nonsymmetric large‐sparse linear system, which can be solved by the GMRES method. In order to accelerate the convergence rate of GMRES method, two Strang‐type block‐circulant preconditioners are suggested: one is for ordinary differential‐algebraic equations (ODAEs), and the other is for neutral differential‐algebraic equations (NDAEs). Under some suitable conditions, it is shown that the preconditioners are invertible, the spectra of the preconditioned systems are clustered, and the solution of iteration converges very rapidly. The numerical experiments further illustrate the effectiveness of the methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this article, we analyze a Crank‐Nicolson‐type finite difference scheme for the nonlinear evolutionary Cahn‐Hilliard equation. We prove existence, uniqueness and convergence of the difference solution. An iterative algorithm for the difference scheme is given and its convergence is proved. A linearized difference scheme is presented, which is also second‐order convergent. Finally a new difference method possess a Lyapunov function is presented. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 437–455, 2007  相似文献   

3.
关于PageRank的广义二级分裂迭代方法   总被引:1,自引:0,他引:1  
潘春平 《计算数学》2014,36(4):427-436
本文研究计算PageRank的迭代法,在Gleich等人提出的内/外迭代方法的基础上,提出了具有三个参数的广义二级分裂迭代法,该方法包含了内/外迭代法和幂迭代法,并研究了该方法的收敛性.基于该方法的收缩因子的计算公式,讨论了迭代参数可能的选择,通过参数的选择能有效提高内/外迭代法的收敛效率.  相似文献   

4.
Among numerous iterative methods for solving the minimal nonnegative solution of an M‐matrix algebraic Riccati equation, the structure‐preserving doubling algorithm (SDA) stands out owing to its overall efficiency as well as accuracy. SDA is globally convergent and its convergence is quadratic, except for the critical case for which it converges linearly with the linear rate 1/2. In this paper, we first undertake a delineatory convergence analysis that reveals that the approximations by SDA can be decomposed into two components: the stable component that converges quadratically and the rank‐one component that converges linearly with the linear rate 1/2. Our analysis also shows that as soon as the stable component is fully converged, the rank‐one component can be accurately recovered. We then propose an efficient hybrid method, called the two‐phase SDA, for which the SDA iteration is stopped as soon as it is determined that the stable component is fully converged. Therefore, this two‐phase SDA saves those SDA iterative steps that previously have to have for the rank‐one component to be computed accurately, and thus essentially, it can be regarded as a quadratically convergent method. Numerical results confirm our analysis and demonstrate the efficiency of the new two‐phase SDA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The Chebyshev accelerated preconditioned modified Hermitian and skew‐Hermitian splitting (CAPMHSS) iteration method is presented for solving the linear systems of equations, which have two‐by‐two block coefficient matrices. We derive an iteration error bound to show that the new method is convergent as long as the eigenvalue bounds are not underestimated. Even when the spectral information is lacking, the CAPMHSS iteration method could be considered as an exponentially converging iterative scheme for certain choices of the method parameters. In this case, the convergence rate is independent of the parameters. Besides, the linear subsystems in each iteration can be solved inexactly, which leads to the inexact CAPMHSS iteration method. The iteration error bound of the inexact method is derived also. We discuss in detail the implementation of CAPMHSS for solving two models arising from the Galerkin finite‐element discretizations of distributed control problems and complex symmetric linear systems. The numerical results show the robustness and the efficiency of the new methods.  相似文献   

6.
A generalized skew‐Hermitian triangular splitting iteration method is presented for solving non‐Hermitian linear systems with strong skew‐Hermitian parts. We study the convergence of the generalized skew‐Hermitian triangular splitting iteration methods for non‐Hermitian positive definite linear systems, as well as spectrum distribution of the preconditioned matrix with respect to the preconditioner induced from the generalized skew‐Hermitian triangular splitting. Then the generalized skew‐Hermitian triangular splitting iteration method is applied to non‐Hermitian positive semidefinite saddle‐point linear systems, and we prove its convergence under suitable restrictions on the iteration parameters. By specially choosing the values of the iteration parameters, we obtain a few of the existing iteration methods in the literature. Numerical results show that the generalized skew‐Hermitian triangular splitting iteration methods are effective for solving non‐Hermitian saddle‐point linear systems with strong skew‐Hermitian parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider an inexact Newton method applied to a second order non‐linear problem with higher order non‐linearities. We provide conditions under which the method has a mesh‐independent rate of convergence. To do this, we are required, first, to set up the problem on a scale of Hilbert spaces and second, to devise a special iterative technique which converges in a higher than first order Sobolev norm. We show that the linear (Jacobian) system solved in Newton's method can be replaced with one iterative step provided that the initial non‐linear iterate is accurate enough. The closeness criteria can be taken independent of the mesh size. Finally, the results of numerical experiments are given to support the theory. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

8.
Rayleigh quotient iteration is an iterative method with some attractive convergence properties for finding (interior) eigenvalues of large sparse Hermitian matrices. However, the method requires the accurate (and, hence, often expensive) solution of a linear system in every iteration step. Unfortunately, replacing the exact solution with a cheaper approximation may destroy the convergence. The (Jacobi‐) Davidson correction equation can be seen as a solution for this problem. In this paper we deduce quantitative results to support this viewpoint and we relate it to other methods. This should make some of the experimental observations in practice more quantitative in the Hermitian case. Asymptotic convergence bounds are given for fixed preconditioners and for the special case if the correction equation is solved with some fixed relative residual precision. A dynamic tolerance is proposed and some numerical illustration is presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
An implicit iterative method is applied to solving linear ill‐posed problems with perturbed operators. It is proved that the optimal convergence rate can be obtained after choosing suitable number of iterations. A generalized Morozov's discrepancy principle is proposed for the problems, and then the optimal convergence rate can also be obtained by an a posteriori strategy. The convergence results show that the algorithm is a robust regularization method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this article is to present several computational algorithms for numerical solutions of a nonlinear finite difference system that represents a finite difference approximation of a class of fourth‐order elliptic boundary value problems. The numerical algorithms are based on the method of upper and lower solutions and its associated monotone iterations. Three linear monotone iterative schemes are given, and each iterative scheme yields two sequences, which converge monotonically from above and below, respectively, to a maximal solution and a minimal solution of the finite difference system. This monotone convergence property leads to upper and lower bounds of the solution in each iteration as well as an existence‐comparison theorem for the finite difference system. Sufficient conditions for the uniqueness of the solution and some techniques for the construction of upper and lower solutions are obtained, and numerical results for a two‐point boundary‐value problem with known analytical solution are given. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:347–368, 2001  相似文献   

11.
Newton iteration method can be used to find the minimal non‐negative solution of a certain class of non‐symmetric algebraic Riccati equations. However, a serious bottleneck exists in efficiency and storage for the implementation of the Newton iteration method, which comes from the use of some direct methods in exactly solving the involved Sylvester equations. In this paper, instead of direct methods, we apply a fast doubling iteration scheme to inexactly solve the Sylvester equations. Hence, a class of inexact Newton iteration methods that uses the Newton iteration method as the outer iteration and the doubling iteration scheme as the inner iteration is obtained. The corresponding procedure is precisely described and two practical methods of monotone convergence are algorithmically presented. In addition, the convergence property of these new methods is studied and numerical results are given to show their feasibility and effectiveness for solving the non‐symmetric algebraic Riccati equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Generalizations of Boolean elements of a BL‐algebra L are studied. By utilizing the MV‐center MV(L) of L, it is reproved that an element xL is Boolean iff xx * = 1 . L is called semi‐Boolean if for all xL, x * is Boolean. An MV‐algebra L is semi‐Boolean iff L is a Boolean algebra. A BL‐algebra L is semi‐Boolean iff L is an SBL‐algebra. A BL‐algebra L is called hyper‐Archimedean if for all xL, xn is Boolean for some finite n ≥ 1. It is proved that hyper‐Archimedean BL‐algebras are MV‐algebras. The study has application in mathematical fuzzy logics whose Lindenbaum algebras are MV‐algebras or BL‐algebras. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this article, a Crank‐Nicolson‐type finite difference scheme for the two‐dimensional Burgers' system is presented. The existence of the difference solution is shown by Brouwer fixed‐point theorem. The uniqueness of the difference solution and the stability and L2 convergence of the difference scheme are proved by energy method. An iterative algorithm for the difference scheme is given in detail. Furthermore, a linear predictor–corrector method is presented. The numerical results show that the predictor–corrector method is also convergent with the convergence order of two in both time and space. At last, some comments are provided for the backward Euler scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
1、引言 近年来,求解抛物型方程的有限差分并行迭代算法有了较大发展.针对稳定性好且难于并行化的隐式差分方程,文第一次提出了构造分段隐式的思想,建立了分段显-隐式(ASE-Ⅰ)方法和交替分段Crank-Nicolson(ASC-N)方法,实现了分而治之原则,  相似文献   

15.
In this paper we investigate the possibility of using a block‐triangular preconditioner for saddle point problems arising in PDE‐constrained optimization. In particular, we focus on a conjugate gradient‐type method introduced by Bramble and Pasciak that uses self‐adjointness of the preconditioned system in a non‐standard inner product. We show when the Chebyshev semi‐iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble–Pasciak method—the appropriate scaling of the preconditioners—is easily overcome. We present an eigenvalue analysis for the block‐triangular preconditioners that gives convergence bounds in the non‐standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This work presents a radial basis collocation method combined with the quasi‐Newton iteration method for solving semilinear elliptic partial differential equations. The main result in this study is that there exists an exponential convergence rate in the radial basis collocation discretization and a superlinear convergence rate in the quasi‐Newton iteration of the nonlinear partial differential equations. In this work, the numerical error associated with the employed quadrature rule is considered. It is shown that the errors in Sobolev norms for linear elliptic partial differential equations using radial basis collocation method are bounded by the truncation error of the RBF. The combined errors due to radial basis approximation, quadrature rules, and quasi‐Newton and Newton iterations are also presented. This result can be extended to finite element or finite difference method combined with any iteration methods discussed in this work. The numerical example demonstrates a good agreement between numerical results and analytical predictions. The numerical results also show that although the convergence rate of order 1.62 of the quasi‐Newton iteration scheme is slightly slower than rate of order 2 in the Newton iteration scheme, the former is more stable and less sensitive to the initial guess. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

17.
The main goal of this paper is to approximate the principal pth root of a matrix by using a family of high‐order iterative methods. We analyse the semi‐local convergence and the speed of convergence of these methods. Concerning stability, it is well known that even the simplified Newton method is unstable. Despite it, we present stable versions of our family of algorithms. We test numerically the methods: we check the numerical robustness and stability by considering matrices that are close to be singular and badly conditioned. We find algorithms of the family with better numerical behavior than the Newton and the Halley methods. These two algorithms are basically the iterative methods proposed in the literature to solve this problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a practical two‐term acceleration algorithm is proposed, the interval of the parameter which guarantees the convergence of the acceleration algorithm is analyzed in detail. Further, the acceleration ratio of the new acceleration algorithm is obtained in advance. The new acceleration algorithm is less sensitive to the parameter than the Chebyshev semi‐iterative method. Finally, some numerical examples show that the accelerated algorithm is effective. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we study the approximation properties of bivariate summation‐integral–type operators with two parameters . The present work deals within the polynomial weight space. The rate of convergence is obtained while the function belonging to the set of all continuous and bounded function defined on ([0],)(×[0],) and function belonging to the polynomial weight space with two parameters, also convergence properties, are studied. To know the asymptotic behavior of the proposed bivariate operators, we prove the Voronovskaya type theorem and show the graphical representation for the convergence of the bivariate operators, which is illustrated by graphics using Mathematica. Also with the help of Mathematica, we discuss the comparison by means of the convergence of the proposed bivariate summation‐integral–type operators and Szász‐Mirakjan‐Kantorovich operators for function of two variables with two parameters to the function. In the same direction, we compute the absolute numerical error for the bivariate operators by using Mathematica and is illustrated by tables and also the comparison takes place of the proposed bivariate operators with the bivariate Szász‐Mirakjan operators in the sense of absolute error, which is represented by table. At last, we study the simultaneous approximation for the first‐order partial derivative of the function.  相似文献   

20.
The concept of a representative spectrum is introduced in the context of Newton‐Krylov methods. This concept allows a better understanding of convergence rate accelerating techniques for Krylov‐subspace iterative methods in the context of CFD applications of the Newton‐Krylov approach to iteratively solve sets of non‐linear equations. The dependence of the representative spectrum on several parameters such as mesh, Mach number or discretization techniques is studied and analyzed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号