首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using small-angle X-ray scattering and dynamic light scattering confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles.  相似文献   

2.
The effect of adding acetylated poly(propyleneimine) dendrimers to the structure and rheology of aqueous solutions of high molecular weight poly(ethylene oxide) (PEO) was investigated by rheology and small‐angle neutron scattering in a temperature range of 10–40 °C. In the semidilute regime, the steady shear rheology of PEO solutions was unmodified by the addition of dendrimers at a comparable weight concentration. At the highest concentrations studied, the addition of acetylated dendrimers suppressed the onset of a low‐frequency elastic modulus at the lowest temperature investigated. For comparison, the addition of PEO of a comparable molecular weight at the same weight fraction resulted in a milder suppression but, unlike the dendrimers, greatly increased the solution viscosity. The addition of acetylated dendrimers to a semidilute PEO solution at 10 °C substantially reduced the solution turbidity. These effects on the rheology and optical properties were confirmed by small‐angle neutron scattering measurements of the molecular structure of the mixture. Additional SANS measurements in the dilute regime (0.1 wt % PEO) showed quantitatively that the dendrimers decorated the PEO chains in a necklace structure, such as that observed previously for micelles. The results suggested a mechanism of rheology modification whereby the dendrimers disrupted the association network structure in the PEO solution at lower temperatures by preferentially associating with the PEO chains in solution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 874–882, 2000  相似文献   

3.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   

4.
研究了带相反电荷的粘土颗粒和MMH(铝、镁混合金属氢氧化物)颗粒形成的混和悬浮体的流变学性能,考察了盐对混合体系流变学性能的影响.结果表明,当粘土质量分数为1%时,悬浮体为牛顿型流体;当质量分数升至2%时,悬浮体表现出固体的弹性响应;特定粘土含量的悬浮体中,随着MMH量的增加,混合体系的屈服值和弹性模量亦增加,表明凝胶结构增强.向混合体系中加入NaCl,弹性模量、屈服值和粘度等流变参数均降低.与单组分粘土悬浮体或MMH悬浮体相比,双组分混合体系的结构恢复很快.  相似文献   

5.
Influence of molecular weight of polymer matrix on nanocomposites rheology is not yet well understood. Herein dynamic rheological responses of fumed silica (FS)/polyethylene oxide (PEO) nanocomposites are investigated as a function of viscosity‐averaged molecular weight (Mη) of PEO, volume fraction (?) and surface characteristics (hydrophilic or hydrophobic) of FS. In the nanocomposites, FS does not influence the glass transition and crystallinity of PEO in the mobile PEO phase while the interfacial interactions tend to immobilize a small fraction of PEO chains that could not undergo glass transition. In spite of the common observation that the reinforcement decreases with increasing Mη of PEO and improving hydrophobicity of FS, linear rheological responses are well reproduced by the two‐phase model, revealing the crucial contribution of the non‐Newtonian matrix undergoing microscopic strain amplified by the filler. Furthermore, nonlinear rheological responses of the nanocomposites are collapsed into master curves plotted against local strain of the matrix. Analyzing the nonlinear rheology by Fourier transform and stress waveform methods reveal the dominating contribution of the matrix and the role of strain amplification played by the filler. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 397–405  相似文献   

6.
Aqueous complexes of PEY1, a 36 100 Da random synthetic peptide of tyrosine (50 mol %) and glutamic acid (50 mol %), with poly(ethylene oxide) (PEO) were studied as functions of PEO molecular weight, mixing ratio of PEO and PEY1, and the presence of calcium ions. Without calcium ions, the complexes were water soluble, with each complex consisting of a single PEO chain with many bound PEY1 chains. In the presence of 1 mM calcium ions, PEY1 formed colloidal aggregates with intermediate molecular weight PEO (10(5) to 10(6) Da). By contrast, very high molecular weight PEO (8 x 10(6) Da) with calcium ions formed large hydrogels when mixed with PEY1. It is proposed that PEY1 molecules completely bind to low molecular PEO and thus are deactivated from causing the coupling of multiple PEO chains, whereas deactivation of PEY1 on very high molecular weight PEO clusters is a slower process, giving an opportunity for cluster-cluster aggregation.  相似文献   

7.
The effect of swelling on the shear modulus was studied for hydrogels prepared by radical polymerization of methacrylate-terminated poly(ethylene oxide) (PEO) bis-macromonomers of different molecular weight. Gels made of long chains (M = 12000 or 6000) display classical softening upon swelling, whereas gels made of shorter chains (M = 4000 or 2000) remain rigid or even stiffen. The abnormal behaviour is explained by a specific character of network junctions presented by polymethacrylate chains in which each unit is linked with a PEO network chain. It is assumed that the interactions among densely grafted PEO chains result in their stretching on polymerization and non-affine deformation on swelling, which stiffen the gel. This is verified by the data on copolymer (macromonomers - 2-hydroxyethyl methacrylate) gels that have lesser densities of PEO chains attached to the junctions and show weaker stiffening on swelling. The osmotic pressure of gels was estimated from the swelling pressure and shear modulus. Similar to the mixing pressure of equivalent PEO solutions, it varies as the 9/4 power of polymer concentration. At the same time, it is lower than the mixing pressure. This indicates that the junctions make only quantitative changes in the osmotic properties of macromonomer chains.  相似文献   

8.
Aqueous solutions of alpha-cyclodextrin (alpha-CD) complex spontaneously with poly(ethylene oxide) (PEO), forming a supramolecular structure known as pseudopolyrotaxane. We have studied the formation of the complex obtained from the threading of alpha-CD onto PEO, both free in solution and adsorbed on colloidal silica. The kinetics of the reaction were studied by gravimetric methods and determined as a function of temperature and solvent composition for the PEO free in solution. PEO was then adsorbed on the surface of colloidal silica particles, and the monomers were displaced by systematically varying the degree of complexation, the concentration of particles, and the molecular weight of the polymer. The effect of the size of the silica particles on the yield of the reaction was also studied. With the adsorbed PEO, the complexation was found to be partial and to take place from the tails of the polymer. The formation of a gel network containing silica at high degrees of complexation was observed. Small-angle X-ray and neutron scattering experiments were performed to study the configuration of the polymeric chains and confirmed the partial desorption of the polymer from the surface of the silica upon complexation.  相似文献   

9.
Polymer–silicate nanocomposites based on poly (ethylene oxide), PEO, poly(methyl methacrylate), PMMA, and sodium montmorillonite clay were fabricated and characterized to investigate the effect of nanolayered silicates on segmental dynamics of PEO/PMMA blends. X‐ray results indicate the formation of an exfoliated morphology in the nanocomposites. At low silicate contents, an enhancement in segmental dynamics of blend nanocomposites and also PEO, minor component in blend, is observed at temperature region below blend glass transition. This result can be attributed to the improvement of the confinement effect of rigid PMMA matrix on the PEO chains by introducing a low amount of layered silicates. On the other hand, at high silicate contents, an enhancement in segmental dynamics of blend nanocomposites and PEO is observed at temperature region above blend glass transition. This behavior could be interpreted based on the reduction of monomeric friction between two polymer components, which can facilitate segmental motions of blend components in nanocomposite systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
郭培志  孙德军 《化学通报》2003,66(5):312-316
综述了合成锂皂石在水中的分散及其分散体系的胶体和流变学性质。重点介绍了改变离子强度、pH、温度以及添加表面活性剂对合成锂皂石分散体系性质的影响和研究进展。  相似文献   

11.
A new kind of binary hydrogels composed of poly(dimethylaminoethylmethacrylate) (PDMAEMA) and poly(ethylene oxide) (PEO) with varying weight average molecular weights ((M)w = 5 × 104, 1 × 105 and 2.5 × 106) were prepared by y-irradiation technology. The properties of PDMAEMA/PEO hydrogels obtained were evaluated in terms of gel fraction, gel strength, thermal characterization and swelling behavior. The gel strength and swelling degree of the hydrogels could be improved obviously after adding PEO into the PDMAEMA system, while the degree of improvement decreased with increasing (M)w of PEO. The temperature sensitivity of PDMAEMA/PEO was retained only in the sample with PEO of (M)w = 5 × 104, and the pH sensitivity was retained in samples with PEO of (M)w = 5 × 104 and 1 × 105. When DMAEMA/PEO mixtures containing PEO of (M)w = 5 × 104 were irradiated, the main reaction could be the cross-linking of DMAEMA, and the linear PEO molecular chains could penetrate into the cross-linked network of PDMAEMA. With increasing Mw of PEO, some side reactions were induced, such as grafting of DMAEMA onto PEO molecules, the scission or cross-linking of PEO.  相似文献   

12.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

13.
Longitudinal relaxation of proton magnetisation was used to characterize the molecular motions of PEO chains in compatible PEO (hydrogenated)/PMMA (deuterated) blends. Both the temperature and the PEO concentration, Φ, were varied. A maximum in the spin–lattice relaxation rate was observed and its properties were analyzed as a function of Φ. For Φ ≤ 0.50, the maximum is observed below the glass transition temperature of the blend; this shows that PEO chains dispersed in a matrix of PMMA remain highly mobile on a local scale even below Tg(Φ). A frequency–temperature correspondence procedure, applied to the measurements performed at two Larmor frequencies, 32 and 60 MHz, leads to a characteristic correlation time for PEO molecular motions. Its temperature dependence obeys a WLF free volume relation above the glass transition of the blends. The PEO free volume fraction and its thermal expansion are strongly reduced by the presence of the PMMA chains. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1095–1105, 1997  相似文献   

14.
Comb copolymers formed from acrylamide and poly(ethylene-glycol) methacrylate macro-monomer (PAM-co-PEG) were compared to poly(ethylene oxide) (PEO) with respect to hydrogen bond complex formation with water-borne phenolic resins. The behaviors of the two types of high molecular weight polyethers were similar. Complex formation gave a transient increase in viscosity followed by precipitation. Copolymers with pendant PEG chain lengths ≥ 9 formed complexes with phenolic resin whereas PEG homopolymer with a molecular weight of 2000 did not form a complex. For both copolymer and high molecular weight PEO, the tendency of the complex to precipitate increased when the pH was decreased from 7 to 4. Acridine orange, a cationic dye, bound to the phenolic resin and, after the addition of PEO, yielded visible complex gels with diameters about 20 μm. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The relative complex dielectric function, electric modulus, alternating current (ac) electrical conductivity and complex impedance spectra of poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay aqueous colloidal suspension (hydrocolloids) were investigated over the frequency range 20 Hz to 1 MHz at 27 °C. The relaxation time corresponding to electrode polarisation and Maxwell–Wagner polarisation processes (ionic conduction) were determined from these plots. The direct current (dc) electrical conductivity is evaluated from the fitting of real part ac conductivity data to the Jonscher power law. A correlation of increase in dc conductivity and decrease of ionic conduction relaxation time with increase of clay concentration is discussed considering intercalation of PEO chains and its dynamics and exfoliation of MMT clay nanoplatelets in these complex fluids. The formation of PEO–MMT clay supramolecular lamellar nanostructures with increase in continuity of lamellae arrangements were explored for the structural conformation of these nanocomposite novel materials.  相似文献   

16.
Poly(ethylene oxide) (PEO, number‐average molecular weight: 2,000,000) was crosslinked by reaction with t‐butylperoxybenzoate in the melt. Upon swelling in water, the resulting hydrogels were acidic and suggested clear evidence of spontaneous hydrolysis that continued over periods of several weeks to give clear and low‐viscosity aqueous solutions of PEO oligomers. In contrast, in neutral media the gels did not show any signs of hydrolysis. As shown by UV, IR, and size exclusion chromatographic analysis, the PEO hydrolysis products consist of benzoic acid and hydroxyl‐ and carboxyl end‐functionalized low‐molecular‐weight PEOs. This is consistent with the acid‐catalyzed hydrolysis of acetal‐, orthoester‐, and similar end‐functionalized PEOs formed by radical coupling of various PEO radicals with benzoate, alkoxy, and other radicals. Titration of the hydrolysis mixtures indicated that the total molar amount of acid exceeds that of the maximum amount of benzoic acid produced during gel formation. However, the amount of benzoic acid equaled this maximum amount. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 520–527, 2003  相似文献   

17.
Triblock copolymers [poly(ethylene oxide) (PEO) and polypropylene oxide (PPO)], Pluronic F127 with 100 PEO blocks on each end, and 65 blocks of PPO in the center were examined in aqueous solution. The “sol” and “gel” phase diagram was determined as a function of concentration and temperature. For further study, the concentration was fixed at 20 wt %, and the temperature dependence of the dynamic viscosity differed from the temperature dependence of fluorescence emission spectra and the microviscosity probed by the fluorescence depolarization kinetics of rhodamine 123 dye, which was dissolved in the continuous hydrophilic phase. The depolarization measurements used single‐photon counting after two‐photon excitation with a Ti‐sapphire femtosecond laser. Although the viscoelastic modulus increased by an order of magnitude when the sol‐to‐gel transition was crossed, the microviscosity of the hydrophilic continuous medium showed only minor changes. At different temperatures the fluorescence lifetime was the same with a single‐exponential time constant, but the fluorescence depolarization displayed a double‐exponential decay. After comparison with fluorescence depolarization of the dye in PPO melt and PEO whose molecular weight and aqueous concentrations were varied, the relative proportions of faster and slower components of the fluorescence depolarization were tentatively attributed to varying ratios of the dye in free solution and associated with micelles. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2883–2888, 2002  相似文献   

18.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

19.
Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS ch...  相似文献   

20.
Salt-induced protein phase transitions in drying drops   总被引:1,自引:0,他引:1  
Protein phase transitions in drying sessile drops of protein-salt-water colloidal systems were studied by means of optical and atom-force microscopy. The following sequence of events was observed during drop drying: attachment of a drop to a glass support; redistribution of colloidal phase due to hydrodynamic centrifugal stream; protein ring formation around the edge; formation of protein spatial structures inside a protein ring that pass into gel in the middle of the drop; salt crystallization in the shrinking gel. It was assumed that rapid drying of a protein ring over the circle of high colloidal volume fraction and low strength of interparticle attraction leads to formation of colloidal glass, whereas gel forms only in the middle of the drop at very low protein volume fraction and strong attraction between the particles. Before gelation, colloidal particles form fractal clusters. In dried drops of salt-free protein solutions, no visual protein structures were observed. Structural evolution of protein in sessile drying drops of protein-salt aqueous colloidal solutions is discussed on the basis of experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号