首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

2.
The ring‐opening polymerization of trimethylene carbonate (TMC) using homoleptic lanthanide guanidinate complexes [RNC(NR′2)NR]3Ln as single component initiators has been fully investigated for the first time. The substituents on guanidinate ligands and center metals show great effect on the catalytic activities of these complexes, that is, ? N(CH2)5 > ? NiPr2 > ? NPh2 (for R′), ? Cy > ? iPr (for R), and Yb > Sm > Nd. Among them, [Ph2NC(NCy)2]3Yb shows the highest catalytic activity. Some features and kinetic behaviors of the TMC polymerization initiated by [Ph2NC(NCy)2]3Yb were studied in detail. The polymerization rate is first order, with the monomer concentration and Mn of the polymer increasing with the polymer yield increasing linearly. The results indicated the present system having “living character.” A mechanism that the polymerization occurs via acyl‐oxygen bond cleavage rather than alkyl‐oxygen bond cleavage was proposed. The copolymerization of TMC with ?‐caprolactone (ε‐CL) initiated by [Ph2NC(NCy)2]3Yb was also tested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1778–1786, 2005  相似文献   

3.
The monomer concentration for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline in N,N‐dimethylacetamide was optimized utilizing high‐throughput experimentation methods. Detailed 1H‐NMR spectroscopic investigations were performed to understand the mechanistic aspects of the observed concentration effects. Finally, the improved polymerization concentration was applied for the synthesis of higher molecular weight (> 10,000 Da) poly(2‐ethyl‐2‐oxazoline)s. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1487–1497, 2005  相似文献   

4.
The ring‐opening polymerization of ?‐caprolactone (?‐CL) catalyzed by iodine (I2) was studied. The formation of a charge‐transfer complex (CTC) among triiodide, I, and ?‐CL was confirmed with ultraviolet–visible spectroscopy. The monomer ?‐CL was polymerized in bulk using I2 as a catalyst to form the polyester having apparent weight‐average molecular weights of 35,900 and 45,500 at polymerization temperatures of 25 and 70 °C, respectively. The reactivity of both, ?‐CL monomer and ?‐CL:I2 CTC, was interpreted by means of the potential energy surfaces determined by semiempirical computations (MNDO‐d). The results suggest that the formation of the ?‐CL:I2 CTC leads to the ring opening of the ?‐CL structure with the lactone protonation and the formation of a highly polarized polymerization precursor (?‐CL)+. The band gaps approximated from an extrapolation of the oligomeric polycaprolactone (PCL) structures were computed. With semiempirical quantum chemical calculations, geometries and charge distributions of the protonated polymerization precursor (?‐CL)+ were obtained. The calculated band gap (highest occupied molecular orbit/lowest unoccupied molecular orbit differences) agrees with the experiment. The analysis of the oligomeric PCL isosurfaces indicate the existence of a weakly lone pair character of the C?O and C? O bonds suggesting a ?‐CL ring‐opening specificity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 714–722, 2002  相似文献   

5.
The cationic ring‐opening polymerization of 2‐methyl‐2‐oxazoline and 2‐phenyl‐2‐oxazoline was efficiently used using bis(η5‐cyclopentadienyl)dimethyl zirconium, Cp2ZrMe2, or bis(η5tert‐butyl‐cyclopentadienyl)dimethyl hafnium in combination with either tris(pentafluorophenyl)borate or tetrakis(pentafluorophenyl)borate dimethylanilinum salt as initiation systems. The evolution of polymer yield, molecular weight, and molecular weight distribution with time was examined. In addition, the influence of the initiation system and the monomer on the control of the polymerization was studied. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2011  相似文献   

6.
Chain‐growth condensation polymerization of p‐aminobenzoic acid esters 1 bearing a tri(ethylene glycol) monomethyl ether side chain on the nitrogen atom was investigated by using lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. The methyl ester monomer 1a afforded polymer with low molecular weight and a broad molecular weight distribution, whereas the polymerization of the phenyl ester monomer 1b at ?20 °C yielded polymer with controlled molecular weight (Mn = 2800–13,400) and low polydispersity (Mw/Mn = 1.10–1.15). Block copolymerization of 1b and 4‐(octylamino)benzoic acid methyl ester ( 2 ) was further investigated. We found that block copolymer of poly 1b and poly 2 with defined molecular weight and low polydispersity was obtained when the polymerization of 1b was initiated with equimolar LiHMDS at ?20 °C and continued at ?50 °C, followed by addition of 2 and equimolar LiHMDS at ?10 °C. Spherical aggregates were formed when a solution of poly 1b in THF was dropped on a glass plate and dried at room temperature, although the block copolymer of poly 1b and poly 2 did not afford similar aggregates under the same conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1357–1363, 2010  相似文献   

7.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   

8.
A detailed exploration of the atom transfer radical polymerization (ATRP) of a sugar‐carrying monomer, 6‐O‐methacryloyl‐1,2;3,4‐di‐O‐isopropylidene‐D‐galactopyranose (MAIPGal) was performed. The factors pertinent to ATRP, such as initiators, ligands, catalysts, and temperature were optimized to obtain good control over the polymerization. The kinetics were examined in detail when the polymerization was initiated by methyl 2‐bromoisopropionate (2‐MBP), ethyl 2‐bromoisobutyrate (2‐EBiB), or a macroinitiator, [α‐(2‐bromoisobutyrylate)‐ω‐methyl PEO] (PEO–Br), with bipyridine (bipy) as the ligand at 60 °C or by 2‐EiBB with N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as the ligand at room temperature (23 °C). The effects of the catalysts (CuBr and CuCl) were also investigated. We demonstrate that the successful ATRP of MAIPGal can be achieved for 2‐EBiB/CuBr/bipy and 2‐MBP/CuCl/bipy at 60 °C and for 2‐EBiB/CuBr/PMDETA at room temperature. The initiation by 2‐EBiB at room temperature with PMDETA as the ligand should be the most optimum operation for its moderate condition and suppression of many side reactions. Chain extension of P(MAIPGal) prepared by ATRP with methyl methacrylate (MMA) as the second monomer was carried out and a diblock copolymer, P(MAIPGal)‐b‐PMMA, was obtained. Functional polymers, poly(D‐galactose 6‐methacrylate) (PGMA), PEO‐b‐PGMA, and PGMA‐b‐PMMA were obtained after removal of the protecting groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 752–762, 2005  相似文献   

9.
Ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out using β‐diketiminato‐supported monoaryloxo ytterbium chlorides L1Yb(OAr)Cl(THF) (1) [L1 = N,N′‐bis(2,6‐dimethylphenyl)‐2,4‐pentanediiminato, OAr = 2,6‐di‐tert‐butylphenoxo‐], and L2Yb(OAr′)Cl(THF) (2) [L2 = N,N′‐bis(2,6‐diisopropylphenyl)‐2,4‐pentanediiminato, OAr′ = 2,6‐di‐tert‐butyl‐4‐methylphenoxo‐], respectively, as single‐component initiator. The influence of reaction conditions, such as polymerization temperature, polymerization time, initiator, and initiator concentration, on the monomer conversion, molecular weight, and molecular weight distribution of the resulting polymers was investigated. Complex 1 was well characterized and its crystal structure was determined. Some features and kinetic behaviors of the CL polymerization initiated by these two complexes were studied. The polymerization rate is first order with respect to monomer. The Mn of the polymer increases linearly with the increase of the polymer yield, while polydispersity remained narrow and unchanged throughout the polymerization in a broad range of temperatures from 0 to 50 °C. The results indicated that the present system has a “living character”. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1147–1152, 2006  相似文献   

10.
The reaction of methacryloyl chloride with 5‐aminotetrazole gave the polymerizable methacrylamide derivative 5‐(methacrylamido)tetrazole ( 4 ) in one step. The monomer had an acidic tetrazole group with a pKa value of 4.50 ± 0.01 in water methanol (2:1). Radical polymerization proceeded smoothly in dimethyl formamide or, after the conversion of monomer 4 into sodium salt 4‐Na , even in water. A superabsorbent polymer gel was obtained by the copolymerization of 4‐Na and 0.08 mol % N,N′‐methylenebisacrylamide. Its water absorbency was about 200 g of water/g of polymer, although the extractable sol content of the gel turned out to be high. The consumption of 4‐Na and acrylamide (as a model compound for the crosslinker) during a radical polymerization at 57 °C in D2O was followed by 1H NMR spectroscopy. Fitting the changes in the monomer concentration to the integrated form of the copolymerization equation gave the reactivity ratios r 4‐Na = 1.10 ± 0.05 and racrylamide = 0.45 ± 0.02, which did not differ much from those of an ideal copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4333–4343, 2002  相似文献   

11.
A π‐conjugated poly(α‐dithienylen‐dithiafulvene) ( 2 ) was obtained by the oxidation polymerization of 2,6‐bis(2‐thienyl)‐1,4‐dithiafulvene ( 1 ) as a dithiafulvene monomer derived from 4‐(2‐thienyl)‐1,2,3‐thiadiazole. When a solution of 1 in CHCl3 was added to a stirred solution of FeCl3 in CHCl3, only the low‐molecular‐weight product 2 was obtained. The mixture was stirred for 15 h with an N2 flow. The polymerization at higher temperatures resulted in polymers with large insoluble fractions. A higher molecular weight polymer was obtained by the oxidation polymerization of a charge‐transfer complex of 1 with 7,7,8,8‐tetracyanoquinodimethane (compound 3 ). In contrast to 2 , polymer 4 was readily soluble in dimethyl sulfoxide, dimethylformamide, and acetone and partially soluble in tetrahydrofuran and methanol and had a larger molecular weight (peak top molecular weight = 37,000). The conductivity of polymer 4 was 3 orders of magnitude larger than that of polymer 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6592–6598, 2005  相似文献   

12.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

13.
The first example of well‐controlled atom transfer radical polymerization (ATRP) of a permanently charged anionic acrylamide monomer is reported. ATRP of sodium 2‐acrylamido‐2‐methylpropanesulfonate (NaAMPS) was achieved with ethyl 2‐chloropropionate (ECP) as an initiator and the CuCl/CuCl2/tris(2‐dimethylaminoethyl)amine (Me6TREN) catalytic system. The polymerizations were carried out in 50:50 (v/v) N,N‐dimethylformamide (DMF)/water mixtures at 20 °C. Linear first‐order kinetic plots up to a 92% conversion for a target degree of polymerization of 50 were obtained with [ECP]/[CuCl]/[CuCl2]/[Me6TREN] = 1:1:1:2 and [AMPS] = 1 M. The molecular weight increased linearly with the conversion in good agreement with the theoretical values, and the polydispersities decreased with increasing conversion, reaching a lower limit of 1.11. The living character of the polymerization was confirmed by chain‐extension experiments. Block copolymers with N,N‐dimethylacrylamide and N‐isopropylacrylamide were also prepared. The use of a DMF/water mixed solvent should make possible the synthesis of new amphiphilic ionic block copolymers without the use of protecting group chemistry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4446–4454, 2005  相似文献   

14.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

15.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

16.
Herein the stereoselective two‐step synthesis of pure exo‐5‐trimethylsilylnorbornene is reported. The monomer proved to be highly reactive in both metathesis and addition polymerization. ROMP polymerization was catalyzed by the first‐generation Grubbs catalyst. High‐molecular‐weight saturated addition polymers were prepared using nickel or palladium complexes as precatalysts and Na+[B(3,5‐(CF3)2C6H3)4] and/or MAO as cocatalysts. The obtained addition polynorbornenes are highly gas permeable and microporous materials possessing large free volume and BET surface area (up to 540 m2/g). The influence of the substituent orientation (exo‐ vs. exo‐/endo‐mixture) on polymer properties was established. The metathesis polymer based on exo‐isomer exhibits 1.5‐ to 2‐fold increase of permeability coefficients for all gases in comparison to the similar polymer based on the mixture of exo‐ and endo‐isomers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1234–1248  相似文献   

17.
A synthetic route is developed for the preparation of an AB‐type of monomer carrying an epoxy and a thiol group. Base‐catalyzed thiol‐epoxy polymerization of this monomer gave rise to poly(β‐hydroxythio‐ether)s. A systematic variation in the reaction conditions suggested that tetrabutyl ammonium fluoride, lithium hydroxide, and 1,8‐diazabicycloundecene (DBU) were good polymerization catalysts. Triethylamine, in contrast, required higher temperatures and excess amounts to yield polymers. THF and water could be used as polymerization mediums. However, the best results were obtained in bulk conditions. This required the use of a mechanical stirrer due to the high viscosity of the polymerization mixture. The polymers obtained from the AB monomer route exhibited significantly higher molecular weights (Mw = 47,700, Mn = 23,200 g/mol) than the materials prepared from an AA/BB type of the monomer system (Mw = 10,000, Mn = 5400 g/mol). The prepared reactive polymers could be transformed into a fluorescent or a cationic structure through postpolymerization modification of the reactive hydroxyl sites present along the polymer backbone. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2040–2046  相似文献   

18.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

19.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

20.
Factors affecting the syntheses of high‐molecular‐weight poly(2,5‐dialkyl‐1,4‐phenylene vinylene) by the acyclic diene metathesis polymerization of 2,5‐dialkyl‐1,4‐divinylbenzenes [alkyl = n‐octyl ( 2 ) and 2‐ethylhexyl ( 3 )] with a molybdenum or ruthenium catalyst were explored. The polymerizations of 2 by Mo(N‐2,6‐Me2C6H3) (CHMe2 Ph)[OCMe(CF3)2]2 at 25 °C was completed with both a high initial monomer concentration and reduced pressure, affording poly(p‐phenylene vinylene)s with low polydispersity index values (number‐average molecular weight = 3.3–3.65 × 103 by gel permeation chromatography vs polystyrene standards, weight‐average molecular weight/number‐average molecular weight = 1.1–1.2), but the polymerization of 3 was not completed under the same conditions. The synthesis of structurally regular (all‐trans), defect‐free, high‐molecular‐weight 2‐ethylhexyl substituted poly(p‐phenylene vinylene)s [poly 3 ; degree of monomer repeating unit (DPn) = ca. 16–70 by 1H NMR] with unimodal molecular weight distributions (number‐average molecular weight = 8.30–36.3 × 103 by gel permeation chromatography, weight‐average molecular weight/number‐average molecular weight = 1.6–2.1) and with defined polymer chain ends (as a vinyl group, ? CH?CH2) was achieved when Ru(CHPh)(Cl)2(IMesH2)(PCy3) or Ru(CH‐2‐OiPr‐C6H4)(Cl)2(IMesH2) [IMesH2 = 1,3‐bis(2,4,6‐trimethylphenyl)‐2‐imidazolidinylidene] was employed as a catalyst at 50 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6166–6177, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号