首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

2.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

3.
Isothermal crystallization rates of semicrystalline poly(methoxypoly(ethylene glycol) methacrylate) brushes on gold‐coated substrates were measured by polarized optical microscopy. Growth rates for crystal radii, which were essentially constant for each film, initially increased with film thickness and then leveled off for film thicknesses >300 nm. Avrami–Evans theory suggests that the spherulites exhibit one‐dimensional growth with heterogeneous nucleation. Compared with physisorbed analogs, polymer brushes crystallized slower due to the restriction of chain mobility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1955–1959, 2010  相似文献   

4.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

5.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

6.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

7.
Isothermal crystallization kinetics of a new sequential poly(ester amide) derived from glycine, 1,4‐butanediol, and adipic acid was investigated with differential scanning calorimetry and optical microscopy. The Avrami analysis was performed to obtain the kinetic parameters of primary and secondary crystallization. The experimental data indicate a heterogeneous nucleation with spherical growth geometry for the primary crystallization, whereas a linear growth within formed spherulites is characteristic of the last crystallization stages. The Lauritzen–Hoffman analysis was also undertaken to determine the different crystallization regimes, having estimated the corresponding nucleation constants. Temperature dependence of the normalized crystallization‐rate constants was tested with different theoretical equations. These allow an estimation of a temperature close to 90 °C for the maximum crystallization rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 903–912, 2003  相似文献   

8.
The isothermal crystallization of poly(propylene) and poly(ethylene terephthalate) was investigated with differential scanning calorimetry and optical microscopy. It was found that the induction time depends on the cooling rate to a constant temperature. The isothermal crystallization of the investigated polymers is a complex process and cannot be adequately described by the simple Avrami equation with time‐independent parameters. The results indicate that crystallization is composed of several nucleation mechanisms. The homogeneous nucleation occurring from thermal fluctuations is preceded by the nucleation on not completely melted crystalline residues that can become stable by an athermal mechanism as well as nucleation on heterogeneities. The nucleation rate depends on time, with the maximum shortly after the start of crystallization attributed to nucleation on crystalline residues (possible athermal nucleation) and on heterogeneities. However, the spherulitic growth rate and the exponent n do not change with the time of crystallization. The time dependence of the crystallization rate corresponds to the changes in the nucleation rate with time. The steady‐state crystallization rate in thermal nucleation is lower than the rate determined in a classical way from the half‐time of crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1835–1849, 2002  相似文献   

9.
The crystallization kinetics of biodegradable poly(butylene succinate‐co‐adipate) (PBS/A) copolyester was investigated by using differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The Avrami and Ozawa equations were used to analyze the isothermal and nonisothermal crystallization kinetics, respectively. By using wide‐angle X‐ray diffraction (WAXD), PBS/A was identified to have the same crystal structure with that of PBS. The spherulitic growth rates of PBS/A measured in isothermal conditions are very well comparable with those measured by nonisothermal procedures (cooling rates ranged from 0.5 to 15 °C/min). The kinetic data were examined with the Hoffman–Lauritzen nucleation theory. The observed spherulites of PBS/A with different shapes and textures strongly depend on the crystallization temperatures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3231–3241, 2005  相似文献   

10.
By adjusting the molecular weight of the poly(l-lactic acid) (PLLA) component in poly(3-hydroxybutyrate) (PHB)/PLLA blends, we investigated the crystallization behaviors of the two components in their immiscible and miscible 50:50 blends by real time infrared (IR) spectroscopy. In the immiscible PHB/PLLA blend, the stepwise crystallization of PHB and PLLA was realized at different crystallization temperatures. PLLA crystallizes first at a higher temperature (120 degrees C). Its crystallization mechanism from the immiscible PHB/PLLA melt is not affected by the presence of the PHB component, while its crystallization rate is substantially depressed. Subsequently, in the presence of crystallized PLLA, the isothermal melt-crystallization of PHB takes place at a lower temperature (90 degrees C). It is interesting to find that there are two growth stages for PHB. At the early stage of the growth period, the Avrami exponent is 5.0, which is unusually high, while in the late stage, it is 2.5, which is very close to the reported value (n approximately 2.5) for the neat PHB system. In contrast to the stepwise crystallization of PHB and PLLA in the immiscible blends, the almost simultaneous crystallization of PHB and PLLA in the miscible 50:50 blend was observed at the same crystallization temperature (110 degrees C). Detailed dynamic analysis by IR spectroscopy has disclosed that, even in such apparently simultaneous crystallization, the crystallization of PLLA actually occurs faster than that of PHB. It has been found that, both in the immiscible and miscible blends, the crystallization dynamics of PHB are heavily affected by the presence of crystallized PLLA.  相似文献   

11.
The effect of low levels of poly(o‐methoxyaniline) (POMA) on the crystallization, morphology, and electrical characteristics of blends with poly(vinylidene fluoride) (PVDF) were studied by infrared spectroscopy, AC electrical measurements, and optical microscopy. Undoped POMA has a strong effect in increasing the α‐phase and decreasing the β‐phase content of PVDF in blends crystallized from solution. For blends melt crystallized, doped POMA promotes much greater homogeneity than undoped POMA. Interestingly, doped POMA promotes the nucleation and growth of unringed PVDF spherulites, whereas undoped POMA hinders it. The doping state of the POMA was also extremely important in determining the electrical behavior of the blend. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1219–1224, 1999  相似文献   

12.
This article deals with the structure, crystallization, morphology, and thermal behavior of poly(p‐phenylene sulfide) (PPS) with low‐molecular mass, probed by DSC, optical, and electron microscopy. The growth rates of spherulites were measured over the temperature range 235–275°C. A regime II–III transition was found at T = 250°C. The regime transition was accompanied by a morphological change from sheaflike structure to classical spherulites. The Avrami equation poorly described the isothermal crystallization of PPS, for the occurrence of mixed growth mechanisms and secondary crystallization, in agreement with the morphology and the thermal behavior. Two melting peaks were detected on DSC curves and attributed to the melting of crystals formed isothermally at Tc by primary and secondary crystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 415–424, 2001  相似文献   

13.
Fully miscible blends over the whole composition range are obtained by melt mixing bacterial poly(3‐hydroxybutyate) (PHB) and tri‐substituted cellulose butyrate [cellulose tributyrate (CTB)]. Blends containing up to 50 wt % CTB are partially crystalline. Isothermal crystallization experiments show formation of PHB spherulites that grow until impingement. Depending on composition, radial growth rate is either constant or it suddenly increases in a very unusual manner leading to peculiar morphologies. In the latter case, in concomitance to the crystal growth acceleration, the sign of birefringence changes and rotation of the PHB unit cell orientation is observed. These results are discussed in terms of the influence of both composition and Tc on the relative crystallization kinetics of the two blend components. A strong effect played by the not yet crystallized CTB component that in the presence of the highly mobile PHB component forms a liquid crystal‐like phase is proposed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, thymine and melamine were introduced as nucleating agents for poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerates) (PHBVs) and poly(3‐hydroxybutyrate) (PHB), and their effects were compared with that of boron nitride (BN). Because the overall crystallization rate of PHBVs decreases significantly with the increase in the 3‐hydroxyvalerate comonomer content, the study focused on the crystallization of PHBVs. Isothermal crystallization kinetics of the neat PHBVs and the nucleated PHBVs were studied by differential scanning calorimetry (DSC). The Avrami equation was derived and the parameters were assessed for the nucleation and crystal growth mechanism. The nucleation and crystal growth were examined using polarized optical microscopy. All nucleating agents had similar particle sizes and showed good dispersion in the polymer matrix, as revealed by scanning electron microscopy. The results indicated that BN and thymine significantly increased the overall crystallization rate for all PHBVs studied and demonstrated very similar nucleating effects. Melamine reacted with PHBVs and accelerated the thermal degradation, and hence was less effective in nucleating PHBVs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1564–1577, 2007  相似文献   

16.
Miscible blends of three crystalline polymers, namely poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), and poly(oxyethylene) (POE), exhibited interpenetrating spherulites, where a spherulite of one component grows inside the spherulites of other components. PBS and PES were immiscible above the melting points, Tm, of these substances, while ternary blends with POE showed miscibility, which depended on the molecular weight of POE. PBS and PES exhibited the same spherulitic growth process as in a miscible binary blend when they were crystallized from a homogeneous ternary melt. Spherulites of PBS, which is the highest‐Tm component, filled the whole volume first when a miscible ternary blend was quenched below Tm of POE, the lowest‐Tm component. Then, the blends showed either two types of crystallization processes. One was successive nucleation and growth of PES and POE spherulites, that is, PES nucleated and developed spherulites inside the PBS spherulites and then POE spherulites grew inside the interlocked spherulites of PBS and PES. The other was simultaneous growth and the formation of interpenetrating spherulites of PES and POE inside the PBS spherulites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 706–711, 2010  相似文献   

17.
Polymer blends based on poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) have been prepared to analyze the crystallization kinetics of poly(ethylene oxide) confined in semicrystalline PVDF with different ratios of both polymers. Both blend components were dissolved in a common solvent, dimethyl formamide. Blend films were obtained by casting from the solution at 70 °C. Thus, PVDF crystals are formed by crystallization from the solution while PEO (which is in the liquid state during the whole process) is confined between PVDF crystallites. The kinetics of crystallization of the confined PEO phase was studied by isothermal and nonisothermal experiments. Fitting of Avrami model to the experimental DSC traces allows a quantitative comparison of the influence of the PVDF/PEO ratio in the blend on the crystallization behavior. The effect of melting and further recrystallization of the PVDF matrix on PEO confinement is also studied. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 588–597  相似文献   

18.
A series of low‐ether‐content polyether–polyester block copolymers with amide linkages were synthesized. Their crystallization kinetics and mechanisms were investigated. The crystallization kinetics were analyzed via Avrami treatment; an average value of 1.8 for the Avrami index was thus obtained. Athermal nucleation was evidenced by observations of a linear boundary between impinged spherulites under polarized light microscopy and transmission electron microscopy. The development of spherulitic morphology with a hedgehog texture was attributed to the mechanism of lamellar branching. On the basis of the morphological observations and Avrami analysis, a crystallization mechanism through a heterogeneous nucleation process with homogeneous lamellar branching was proposed. No regime transition was found for polyether–polyesters in the examined temperature ranges, and the crystallization was identified as regime I kinetics on the basis of a Lauritzen Z test. The copolymerization of poly(ether amide)s with polyesters led to a significant suppression of the crystallization rate of polyester crystals. The suppression was explained as the result of a dilution effect in nucleation combined with an increasing nucleation barrier. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2469–2480, 2001  相似文献   

19.
The lamellar types as revealed by the multiple melting peaks and possible mechanisms of ringed spherulites in poly(trimethylene terephthalate) (PTT) were analyzed with differential scanning calorimetry (DSC), optical microscopy, and scanning electron microscopy. Several interesting correlations were found. If PTT is melt‐crystallized in a certain temperature range, it shows multiple melting peaks and rings in PTT. Once rings are formed in the original melt‐crystallized PTT, they do not disappear but persist and become even more apparent upon postcrystallization annealing at higher temperatures. Furthermore, for PTT that is capable of exhibiting ringed spherulites, a temperature range exists where rings do not form. This behavior can be interpreted in relation with the demonstrated thermal behavior in PTT. Reorganization took place upon postcrystallization scanning or annealing to or at higher temperatures. A postulation was proposed and rigorously tested with evidence to correlate the ringed spherulites and melting behavior. Rings in PTT may be related to multiple lamellae in the spherulites. Consequently, if a temperature of crystallization is selected so that there is only one type of lamella in the spherulites, then there should be no rings. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 80–93, 2002  相似文献   

20.
The crystallization and melting behaviors of poly (vinylidene fluoride) (PVDF) with small amount of nanoparticles (1 wt %), such as montmorillonite (MMT), SiO2, CaCO3, or polytetrafluoroethylene (PTFE), directly prepared by melt‐mixing method were investigated by scanning electron microscopy (SEM), polarizing optical microscopy, Fourier transform infrared spectroscopy, wide angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC). The nanoparticle structure and the interactions between PVDF molecule and nanoparticle surface predominated the crystallization behavior and morphology of the PVDF. Small amount addition of these four types of nanoparticles would not affect the original crystalline phase obtained in the neat PVDF sample (α phase), but accelerated the crystallization rate because of the nucleation effect. In these four blend systems, MMT or PTFE nanoparticles could be well applied for PVDF nanocomposite preparation because of stronger interactions between particle surface and PVDF molecules. The nucleation enhancement and the growth rate of the spherulites were decreased in the order SiO2 > CaCO3 > PTFE > MMT. The melting and recrystallization of PVDF was found in MMT addition sample, because of the special ways of ordering of the PVDF chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号