首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Variable temperature studies of the infrared spectra (3500–400 cm−1) of 1-pentyne, CH3CH2CH2CCH, dissolved in liquid xenon (−55 to −100°C) and liquid krypton (−105 to −150°C) have been recorded. These data indicate that the anti (methyl group trans to the acetylenic group) and gauche conformers have relative concentrations that vary with the temperature, i.e. enthalpy nonzero. Utilizing seven sets of conformer pairs for the xenon solution and ten sets of conformer pairs for the krypton solution, the enthalpy difference has been determined to be 50±6 cm−1 (0.60±0.07 kJ/mol) and 45±4 cm−1 (0.54±0.05 kJ/mol), respectively, with the anti conformer the more stable form. Because of two equivalent gauche forms, this conformer is estimated to be in higher abundance at 61±1% in the xenon solution and 62±1% in the krypton solution. Optimized geometries and conformational stabilities have been obtained from ab initio calculations with basis sets 6-31G(d), 6-311+G(d,p), 6-311+G(2d,2p) and 6-311+G(2df,2pd) with full electron correlation by the perturbation method to second order (MP2). All of the calculations predict the gauche rotamer to be the more stable form with a high value of 181 cm−1 from the MP2/6-311+G(d,p) calculations and a low value of 107 cm−1 from the MP2/6-311+G(2d,2p) calculation. The ro adjusted structural parameters have been obtained from a combination of the microwave rotational constants and ab initio predicted parameters. The values are compared to the recently reported values from an electron diffraction study where the value for the CC bond distance appears to be too long. The results are discussed and the conformational stability is compared to those obtained for some similar molecules.  相似文献   

2.
Variable temperature (−55 to −135°C) studies of the infrared spectra (3500–400 cm−1) of 1-bromo-2-fluoroethane, BrCH2CH2F, dissolved in liquid krypton and xenon have been recorded. From these data, the enthalpy difference has been determined to be 108±9 cm−1 (1.296±0.113 kJ/mol) and 112±8 cm−1 (1.346±0.098 kJ/mol) from the krypton and xenon solutions, respectively, with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate. Structural parameters and conformational stability have also been obtained from MP2/6-311+G** calculations. Combining the ab initio predicted structural parameters with the microwave rotational constants, ro parameters have been obtained for the gauche conformer.  相似文献   

3.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

4.
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500 to 400 cm−1) of dimethylmethoxyphosphine, (CH3)2POCH3 and dimethyl(methylthio)phosphine, (CH3)2PSCH3 dissolved in liquid krypton and/or xenon have been recorded. From these data, the enthalpy differences have been determined to be 393±50 cm−1 (4.71±0.60 kJ/mol), for (CH3)2POCH3 with the near-cis conformer the more stable rotamer and 80±10cm−1 (0.96±0.12 kJ/mol) for (CH3)2PSCH3 with the cis conformer the more stable form. Complete vibrational assignments are presented for both molecules, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules.  相似文献   

5.
The infrared spectra (3200–30 cm−1) of gaseous and solid ethyl fluorosilane, CH3CH2SiH2F, have been recorded. Additionally, the Raman spectra (3200–30 cm−1) of the liquid and solid have been recorded and quantitative depolarization values obtained. Both the gauche and trans conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 54±16 cm−1 (646±191 J/mol) with the gauche conformer the more stable form. This is consistent with the predictions from ab initio, MP2/6-311+G(2d,2p), calculation as well as those with smaller basis sets with full electron correlations. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which are supported by normal-coordinate calculations utilizing the force constants from MP2/6-31G(d) ab initio calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311+G(2d,2p) at levels of restricted Hartree–Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The adjusted r0 parameters have been obtained for both conformers from a combination of the previously reported rotational constants with ab initio predicted values. All results are compared to similar quantities of some corresponding molecules.  相似文献   

6.
The infrared spectra (3500 to 40 cm−1) of gaseous and solid and the Raman spectra (3500 to 30 cm−1) of liquid and solid 1-fluorosilacyclobutane, c-C3H6SiFH, have been obtained. Both the axial and equatorial conformers with respect to the fluorine atom have been identified in the fluid phases. Variable temperature (−105 to −150 °C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 282 ± 27 cm−1 (3.37 ± 0.32 kJ/mol), with the equatorial conformer the more stable form and the only conformer remaining in the annealed solid. At ambient temperature there is approximately 21 ± 2% of the axial conformer present in the vapor phase. From isolated Si–H stretching frequencies the Si–H (r0) distances are calculated to be 1.484 and 1.485 Å for the equatorial and axial conformers, respectively. Structural parameters have been predicted from MP2/6-311 + G(d,p) ab initio calculations and the adjusted r0 parameters for both conformers were obtained from a combination of the ab initio predicted values and the six previously reported microwave rotational constants. Along with the Si–H bond distance, the Si–C, and C–C distances of 1.865(5), and 1.571(5) Å, respectively, for the equatorial conformer are significantly different from the values for these parameters previously reported from an election diffraction study. Both the SiC and CC distances and the SiF distance are longer by 0.002 and 0.004 Å, respectively, for the axial conformer. Structural parameters have also been obtained for silacyclobutane, c-C3H6SiH2 and ethylsilylfluoride, CH3CH2SiH2F, from combined ab initio predicted values and previously reported rotational constants. Several of these newly determined parameters are significantly different from those previously reported for both molecules. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the level of Moller–Plesset (MP) to second order. A complete vibrational assignment supported by normal coordinate calculations is proposed for the equatorial conformer, and several of the fundamentals of the axial conformer have also been identified. The results are discussed and compared to corresponding quantities for some similar molecules.  相似文献   

7.
Variable temperature (−55 to −100 °C) studies of the infrared spectra (3200 to 100 cm−1) of cyclopropylmethyl isocyanate, c-C3H5CH2NCO, dissolved in liquefied xenon, have been carried out. The infrared spectra (gas and solid) as well as the Raman spectrum of the liquid have been recorded from 3200 to 100 cm−1. By analyzing six conformer pairs in xenon solutions, an enthalpy difference of 193 ± 19 cm−1 (2.31 ± 0.23 kJ/mol) was obtained with the gauche–cis rotamer (the first designation indicates the orientation of the CNCO group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCO group with respect to the bridging CC bond) the more stable form and the only form present in polycrystalline solid. The abundance of the cis–trans conformer present at ambient temperature is 16 ± 1%. The potential function governing the conformational interchange has been obtained from B3LYP/6-31G(d) calculations and the two-dimensional potential has been obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche–cis conformer is predicted to be more stable by 223 to 269 cm−1, which is consistent with the experimental results. However, without diffuse functions the predicted conformational energy differences are much smaller (77–166 cm−1). Similar diffuse function dependency affects density functional theory calculations by the B3LYP method to a lesser extent. A complete vibrational assignment for the gauche–cis conformer is proposed and several fundamentals for the cis–trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and r0 structural parameters are estimated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

8.
The far infrared spectrum from 370 to 50 cm−1 of gaseous 2-bromoethanol, BrCH2CH2OH, was recorded at a resolution of 0.10 cm−1. The fundamental O–H torsion of the more stable gauche (Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm−1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm−1) and Tt (234 cm−1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm−1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm−1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm−1 (4.92±0.48 kJ/mol) for the Gg′/Tt and 315±40 cm−1 (3.76±0.48 kJ/mol) for the Gg′/Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers.  相似文献   

9.
The infrared spectra (3500–40 cm−1) of gaseous and solid and the Raman spectra (3500–30 cm−1) of liquid and solid 1-chlorosilacyclobutane, c-C3H6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm−1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

10.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

11.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

12.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

13.
The overall conformational order of the alkyl tail of the lyotropic lamellar phase of the dimethyldodecyl amineoxide, (CH3)2ON+(CH2)11CH3 (DDAO)---H2O system (75.7 wt.%) has been studied by using Fourier transform infrared spectroscopy. The spectral region 1000–1400 cm−1, covering the CH2 wagging modes and the methyl umbrella modes of DDAO, has been recorded in the temperature interval 3–60°C and at different mole fractions of gramicidin-D with respect to DDAO (Xg = 0.03, 0.05 and 0.1) for both DDAO-H2O and DDAO-D2O systems. It has been shown that the DDAO amphiphile molecules of the lamellar phase reorganise in a phase-like transition near 25–30°C. The DDAO-water system does not show any significant bands corresponding to a double gauche conformation at 1355 cm−1 nor to a gauche-transgauche (kinked) conformation at 1367 cm−1. These bands are probably present but hidden in the broad low-frequency side of the CH3 umbrella band at 1377 cm−1. Upon incorporation of gramicidin into the lamellar phase both head group and acyl chain spectra of the lipid change in such a way as to indicate a decreased “ordering” of the molecules, as judged by comparison with spectra of the same molecule in a micellar environment, and with increased fluidity of the acyl chains.  相似文献   

14.
Activated silica gel was directly modified with a cyclic molecule, ethyleneimine, yielding a surface with various nitrogen basic centers, ≡Sil–O(CH2CH2NH)nCH2CH2NH2. Infrared spectroscopy, 13C NMR, thermal, and elemental analyses confirmed the covalent attachment of the organic species onto the silica matrix. The purpose of this paper is to describe the interaction involving the grafted species on silica surface with the divalent heavy cations, Pb(II), Cd(II), and Hg(II), from aqueous solutions at room temperature. The process of metal extraction was followed by the batch method and the order of the maximum extraction capacities found was: 1.27 ± 0.04, 1.02 ± 0.02, and 0.98 ± 0.01 mmol g−1 for Pb(II), Cd(II), and Hg(II) chlorides, respectively. These interactions were followed by calorimetric titration. The enthalpies of these processes are: −3.05 ± 0.02, −1.09 ± 0.01, and −9.88 ± 0.03 kJ mol−1 for Pb(II), Cd(II), and Hg(II), respectively. The standard molar Gibbs free energies are in agreement with the spontaneity of the proposed reactions between cation and basic center.  相似文献   

15.
Organolanthanide chloride complexes [(CH3OCH2CH2C5H4)2Ln(μ-Cl)]2 (Ln = La, Pr, Ho and Y) react with excess NaH in THF at 45°C to give the dimeric hydride complexes [(CH3OCH2CH2C5H4)2Ln(μ-H)]2, which have been characterized by IR, 1H NMR, MS and XPS spectroscopy, elemental analyses and X-ray crystallography. [(CH3OCH2CH2C5H4)2Y(μ-H)]2 crystallizes from THF/n-hexane at −30°C, in the triclinic space group P1 with a = 8.795(2) Å, b = 11.040(1) Å, c = 16.602(2) Å, = 93.73(1)°, β = 91.82(1)°, γ = 94.21(1)°, Dc = 1.393 gcm−3 for Z = 2 dimers. However, crystals of [(CH3OCH2CH2C5H4)2Ho(μ-OH)]2 were obtained by recrystallization of holmium hydride in THF/n-hexane at −30°C, in the orthorhombic space group Pbca with a = 11.217(2) Å, b = 15.865(7) Å, c = 17.608(4) Å, Dc = 1.816 gcm−3 for Z = 4 dimers. In the complexes of yttrium and holmium, each Ln atom of the dimers is coordinated by two substituted cyclopentadienyl ligands, one oxygen atom and two hydrogen atoms (for the Y atom) or two hydroxyl groups (for the Ho atom) to form a distorted trigonal bipyramid if the C(η5)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex.  相似文献   

16.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

17.
Monte Carlo simulation studies of statistical perturbation theory (SPT) have been carried out to investigate the solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for K+ to Na+ ion mutation in the several solvents. We compared the relative free energies for interconversion of K+ to Na+, in H2O (TIP4P) in this study with those published works, that in H2O (TIP4P) is −16.55 kcal/mol in this study, those of the published works are −17.6, −17.3 and −17.31 kcal/mol and that of the experiment is −17.6 kcal/mol, respectively. Comparing the relative free energies for interconversion of K+ to Na+, in CH3OH in this study with those published works, that in CH3OH is −18.08±0.28 kcal/mol in this study, that of molecular dynamic simulation is −19.6±0.4 kcal/mol and that of the experimental work is −17.3 kcal/mol, respectively. There is good agreement among the several studies if we consider both methods of obtaining the solvation (or hydration) free energies and the standard deviations. For the present K+ and Na+ ions, the relative free energies of solvation vs Born's function of solvents are decreased with increasing Born's function of solvent except for CH3OH, THF and MEOME. There is also good agreement between the calculated structural properties in this study and the computer simulation, ab initio and experimental works.  相似文献   

18.
The Raman (10–3500 cm−1) and infrared (150–3500 cm−1) spectra have been recorded for tris(4-oxibenzaldehyde)thiophosphate. This compound includes structural parts of elementoorganic dendrimers: a core and terminal aldehyde groups. The structural optimization and normal mode analysis are performed for elementoorganic dendrimer on the basis of the ab initio density functional theory. It is found that the dendrimer exist in a single stable conformation with planar C6H4CHO fragments. Our calculations show that conformer with one trans and two gauche 4-oxibenzaldehyde groups is realized. All these observations suggest that steric congestion does not disturb the construction of dendrimers even for the highest generations, and that terminal groups are readily available for further reactions. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers.  相似文献   

19.
The convergence of ab initio calculations of the beryllium dimer potential is examined with several basis sets orders of perturbation theory. When the atomic pair natural orbital basis set calculations are extrapolated to the complete basis set and full CI limits, the calculated parameters: Re=2.447 Å, De=827 cm−1, ν01=212.7 cm−1, ν12=167.2 cm−1, ν23=121.5 cm−1 and ν34=77.7 cm−1 are in good agreement with the experimental parameters: Re=2.45 Å, De=839±10 cm−1, ν01=223.2 cm−1, ν12=169.7 cm−1, ν23=122.5 cm−1, and ν34=79 cm−1.  相似文献   

20.
Pradyot K. Chowdhury   《Chemical physics》2006,320(2-3):133-139
The vibrational frequencies of the N–H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm−1 are assigned to the symmetric and antisymmetric N–H stretching vibrations of the 1:2 aniline–THF complex, respectively. The red-shifts of the N–H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF)2 structure in which both aniline N–H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol−1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N–H bonds in the NH2 group increased to 112.5° in the aniline–(THF)2 complex from that of 109.8° in the aniline. The electronic 0–0 band origin for the S1 ← S0 transition is observed at 32,900 cm−1 in the aniline–(THF)2 complex, giving a red-shift of 1129 cm−1 from that of the aniline molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号