首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

2.
功能梯度材料杆的热后屈曲分析   总被引:1,自引:0,他引:1  
对两端不可移简支陶瓷-金属功能梯度材料(FGM)杆建立了在热载荷作用下的非线性控制微分方程,采用打靶法分析了由二氧化锆和Ti-6Al-4V两种材料组成的FGM杆的热后屈曲行为.首先给出了在均匀温度场中不同梯度指标的FGM杆的热后屈曲平衡路径,并与二氧化锆和Ti-6Al-4V两种均质材料杆的相应特性进行了比较,同时讨论了不同端部转角下梯度指标对FGM杆稳定性的影响;然后分别研究了在温差一定、下表面温度变化时和在下表面温度一定、温差变化时FGM杆的热后屈曲特性,也与两种均质材料杆的后屈曲特性进行了比较.  相似文献   

3.
功能梯度材料Timoshenko梁的热过屈曲分析   总被引:3,自引:0,他引:3  
研究了功能梯度材料Timoshenko梁在横向非均匀升温下的热过屈曲.在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了功能梯度Timoshenko梁在热-机械载荷作用下的几何非线性控制方程,将问题归结为含有7个基本未知函数的非线性常微分方程边值问题A·D2其中,假设功能梯度梁的材料性质为沿厚度方向按照幂函数连续变化的形式.然后采用打靶法数值求解所得强非线性边值问题,获得了横向非均匀升温场内两端固定Timoshenko梁的静态非线性热屈曲和热过屈曲数值解.绘出了梁的变形随温度载荷及材料梯度参数变化的特性曲线,分析和讨论了温度载荷及材料的梯度性质参数对梁变形的影响.结果表明,由于材料在横向的非均匀性,均匀升温时的梁中存在拉-弯耦合变形.  相似文献   

4.
基于经典梁理论,运用虚功原理和变分法推导了均匀变温场与横向均布荷载联合作用的功能梯度梁的几何非线性控制方程.考虑端部不可移夹紧边界条件,运用打靶法求解了该两点边值问题.当横向均布荷载为0时,考察了功能梯度梁的热屈曲临界升温和屈曲平衡路径.当均匀变温与横向均布荷载都不为0时,考察了功能梯度梁的荷载 挠度曲线.数值结果表明:随材料体积分数指数增加,梁的有量纲热屈曲临界升温显著减小,后屈曲变形显著增加;变温对功能梯度梁的荷载 挠度曲线影响非常显著.发现了功能梯度梁的双稳态构形及其转换现象,梁的最终平衡位形不但与变温及荷载参数有关,还与加载历程有关.  相似文献   

5.
This paper investigates the imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams subjected to in-plane temperature variation. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction and temperature-dependent. A generic imperfection function is used to model various possible imperfections, including sine type, global and localized imperfections. The governing equations are derived based on the first-order shear deformation beam theory and von-Kármán geometric nonlinearity. The differential quadrature method in conjunction with modified Newton–Raphson technique is employed to determine the thermal post-buckling equilibrium path of imperfect FG-CNTRC beams. Thermal buckling is treated as a subset problem. A parametric study is conducted to examine the effects of imperfection mode, half-wave number, location and amplitude on their thermal post-buckling performance. The influences of distribution pattern and volume fraction of carbon nanotubes, boundary conditions and slenderness ratio are discussed as well. The results indicate that the thermal post-buckling is highly sensitive to the imperfection mode, half-wave number, location as well as its amplitude. It is also shown that the clamped-clamped FG-CNTRC beam is more sensitive to imperfections than those with other boundary conditions whereas other parameters do not substantially affect the imperfection sensitivity of thermal post-buckling behaviour.  相似文献   

6.
Based on Giannakopoulos’s 2-D functionally graded material (FGM) contact model, a modified contact model is put forward to deal with impact problem of the functionally graded shallow spherical shell in thermal environment. The FGM shallow spherical shell, having temperature dependent material property, is subjected to a temperature field uniform over the shell surface but varying along the thickness direction due to steady-state heat conduction. The displacement field and geometrical relations of the FGM shallow spherical shell are established on the basis of TimoshenkoMidlin theory. And the nonlinear motion equations of the FGM shallow spherical shell under low velocity impact in thermal environment are founded in terms of displacement variable functions. Using the orthogonal collocation point method and the Newmark method to discretize the unknown variable functions in space and in time domain, the whole problem is solved by the iterative method. In numerical examples, the contact force and nonlinear dynamic response of the FGM shallow spherical shell under low velocity impact are investigated and effects of temperature field, material and geometrical parameters on contact force and dynamic response of the FGM shallow spherical shell are discussed.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(11-12):2848-2866
This paper presents an analytical investigation on the nonlinear response of thick functionally graded doubly curved shallow panels resting on elastic foundations and subjected to some conditions of mechanical, thermal, and thermomechanical loads. Material properties are assumed to be temperature independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The formulations are based on higher order shear deformation shell theory taking into account geometrical nonlinearity, initial geometrical imperfection and Pasternak type elastic foundation. By applying Galerkin method, explicit relations of load-deflection curves for simply supported curved panels are determined. Effects of material and geometrical properties, in-plane boundary restraint, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the panels are analyzed and discussed. The novelty of this study results from accounting for higher order transverse shear deformation and panel-foundation interaction in analyzing nonlinear stability of thick functionally graded cylindrical and spherical panels.  相似文献   

8.
This paper investigates the three-dimensional thermo-elastic deformation of cylindrical shells on two-parameter elastic foundations with continuously graded of volume fraction, subjected to thermal load. Suitable temperature and displacement functions that identically satisfy boundary conditions at the edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are solved by Generalized Differential Quadrature (GDQ) method. Results are presented for two-constituent isotropic and fiber-reinforced functionally graded cylindrical shells that have a smooth variation of volume fractions through the radial direction. Symmetric and asymmetric volume fraction profiles are presented in this paper. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. Effects of stiffness of the foundation and variations of different parameters of generalized power-law distribution on steady-state responses of the functionally graded cylindrical shell resting on elastic foundation are discussed. In addition, the effects of the FGM configuration are studied by considering the mechanical entities of different FGM fiber-reinforced cylindrical shells resting on elastic foundation. Some results are presented for the first time and some important conclusions are drawn.  相似文献   

9.
This study analyzes the nonlinear free vibration and post-buckling of nanobeams with flexoelectric effect based on Eringen's differential model. The nanobeam is modeled based on Timoshenko beam's theory. The von-Kármán strain–displacement relation together with the electrical Gibbs free energy and Hamilton's principle are employed to derive equations of motion. The nonlinear free vibration frequencies are obtained for pinned–pinned (P–P) and clamped–clamped (C–C) boundary conditions. Multiple scales method is employed to obtain the closed-form solution for the nonlinear governing equations. By employing this methodology, the natural frequencies of nanobeams are obtained and their post-buckling behavior is examined. The influence of nonlocal parameter, amplitude ratio, and input voltage on the top surface and flexoelectricity constant on nonlinear free vibration and post-buckling characteristics of nanobeam is investigated. In this paper, it is concluded that the flexoelectricity has a significant effect on free vibration of the beams in nano-scale and its effect has to be considered in designing nano-electro-mechanical systems (NEMS) such as nano- generators and nano-sensors.  相似文献   

10.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   

11.
根据扁壳几何非线性理论,推导了均布压力与均匀温度场联合作用下的扁球壳的位移型几何非线性控制方程.考虑夹紧边界条件,采用打靶法得到了扁球壳轴对称弯曲与屈曲的数值结果.讨论了壳体几何参数对平衡路径、临界荷载的影响.给出了壳体临界几何参数.当几何参数大于临界几何参数时,上、下临界荷载都随几何参数增加而增加.给定几何参数时,考察了不同均匀温度场对壳体上、下临界荷载、临界几何参数以及平衡构型的影响.均匀升温会使上临界荷载显著增加,会使下临界荷载略有减小.均匀变温会使临界几何参数改变.  相似文献   

12.
This paper presents a detailed analytical investigation on the buckling and postbuckling behavior of laminated composite double curved panels with eccentrically and/or concentrically ortho-grid stiffeners subjected to in-plane compression, lateral pressure, thermal environment, and combined loads. The panels are surrounded by three parameter elastic foundations. Different types of simple-supported boundary conditions are considered. The equilibrium and compatibility equations of panel are derived based on Kirchhoff assumptions incorporating nonlinear von-Karman relations. The stress function and Galerkin method are applied to obtain explicit expressions of the buckling load and load-deflection relations. New results are presented to show effects of the combined loads, position of stiffener, and elastic foundation. As a key finding of these results, the buckling load and the postbuckling curves of concentrically stiffened panels are higher than eccentrically stiffened panels.  相似文献   

13.
Based on the von Kármán geometric nonlinear plate theory, the displacement⁃type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2⁃point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer⁃thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness⁃radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

14.
Thermal post-buckling paths of homogeneous, isotropic, square plate configurations resting on elastic foundation (Winkler type) subjected to biaxial compressive thermal loads are expressed as simple closed-form solutions by using the Rayleigh–Ritz method based on coupled displacement fields. Geometric non-linearity of von-Karman type is considered. The in-plane displacement field variations used in the formulation of Rayleigh–Ritz method are derived by using the governing in-plane static differential equations of the plate which in turn simplifies the difficulty of assuming an in-plane displacement field variations of the square plate. Accuracy and robustness of the proposed closed-form solutions are demonstrated by using the non-linear finite element formulation results which are obtained from an equilibrium path approach.  相似文献   

15.
加热弹性杆的热过屈曲分析   总被引:24,自引:4,他引:20  
基于轴线可伸长细杆的过屈曲变形几何理论,建立了两端轴向不可移的均匀加热直杆热弹性过屈曲行为的精确数学模型.这是一个包含杆轴线弧长在内的多未知函数的强非线性一阶常微分方程两点边值问题.采用打靶法和解析延拓法直接数值求解上述非线性边值问题,分别获得了两端横向简支和夹紧杆的热过屈曲状态解,给出了具有不同细长比杆的热过屈曲平衡路径.  相似文献   

16.
A ceramic/metal functionally graded circular plate under one-term and two-term transversal excitations in the thermal environment is investigated, respectively. The effects of geometric nonlinearity and temperature-dependent material properties are both taken into account. The material properties of the functionally graded plate are assumed to vary continuously through the thickness, according to a power law distribution of the volume fraction of the constituents. Using the principle of virtual work, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic forcing excitation and thermal load are derived. For the circular plate with clamped immovable edge, the Duffing nonlinear forced vibration equation is deduced using Galerkin method. The criteria for existence of chaos under one-term and two-term periodic perturbations are given with Melnikov method. Numerical simulations are carried out to plot the bifurcation curves for the homolinic orbits. Effects of the material volume fraction index and temperature on the criterions are discussed and the existences of chaos are validated by plotting phase portraits, Poincare maps. Also, the bifurcation diagrams and corresponding maximum Lyapunov exponents are plotted. It was found that periodic, multiple periodic solutions and chaotic motions exist for the FGM plate under certain conditions.  相似文献   

17.
Buckling behaviors of elastoplastic ceramic/metallic functionally graded material (FGM) rings are investigated by using the first order shear deformation theory. The hydrostatic-pressured rings are assumed to be in both the plane-stress case and the plane-strain case, which lead respectively to a uniaxial and a biaxial elastoplastic stress states in prebuckling stage. A uniform strain hypothesis helps to deal with the elastoplastic stress states. By introducing in the graded material properties, the constitutive model of FGMs is formulated under the framework of J2 deformation theory. By considering the kinetic relations of von-Kárman type and employing the principle of virtual displacement, the equilibrium equations and the buckling governing equations of FGM circular rings are formulated, and the analytical solution of the anisotropic rings is obtained. Finally, the elastoplastic buckling problem is numerically solved through a semi-analytical method, which is proposed to seek the real circumferential strain of FGM rings at the buckling point and determinate the elastoplastic buckling critical hydrostatic pressure. The effects of the inhomogeneous and geometrical parameters on the buckling critical load and the position of the elastoplastic interface are discussed. Results show that, in both the plane-stress and the plane-strain cases, the elastoplastic critical loads are generally lower than their elastic counterparts due to material flow, and the plane-strain critical load is generally larger than the plane-stress one. The elastoplastic critical load does not always decrease monotonously with the increase of the inhomogeneous parameters, which is quite different from their elastic counterparts.  相似文献   

18.
Nonlinear transient thermal stress and elastic wave propagation analyses are developed for hollow thick temperature-dependent FGM cylinders subjected to dynamic thermomechanical loads. Stress wave propagation, wave shape distortion, and speed variation under impulsive mechanical loads in thermal environments are also investigated. In contrast to researches accomplished so far, a second-order formulation rather than a first-order one is employed to improve the accuracy. The FDM method (as a point-collocation FEM method) is used. It is known that other FEM methods cannot show the actual trend jumps due to distributing the abrupt changes in the quantities as the numerical errors and the residuals of the governing equations among the nodal results. Furthermore, the required computational time and allocated computer memory are much reduced by the present solution algorithm. The cylinder is not divided into isotropic sub-cylinders. Therefore, artificial wave reflections from the hard interfaces are avoided. Time variations of the temperatures, displacements, and stresses due to the dynamic or impulsive loads are determined by solving the resulted highly nonlinear governing equations using an iterative updating solution scheme. A sensitivity analysis includes effects of the volume fraction indices, dimensions, and temperature-dependency of the material properties is performed. Results reveal the significant effect of the temperature-dependency of the material properties on the thermoelastic stresses and present some interesting characteristics of the thermoelastic and wave propagation behaviors.  相似文献   

19.
Mechanics of Composite Materials - In this study, the nonlinear buckling of stiffened FGM truncated conical shells resting on an elastic foundation and subjected to a uniform axial compressive load...  相似文献   

20.
The paper presents Chebyshev series based analytical solutions for the postbuckling response of the moderately thick laminated composite rectangular plates with and without elastic foundations. The plate is assumed to be subjected to in-plane mechanical, thermal and thermomechanical loadings. In-plane mechanical loading consists of uniaxial, biaxial, shear loadings and their combinations. The temperature induced loading is due to either uniform temperature or a linearly varying temperature across the thickness. The mathematical formulation is based on higher order shear deformation theory (HSDT) and von-Karman nonlinear kinematics. The elastic foundation is modeled as shear deformable with cubic nonlinearity. The thermal and mechanical properties of the composites are assumed to be temperature dependent. The quadratic extrapolation technique is used for linearization and fast converging finite double Chebyshev series is used for spatial discretization of the governing nonlinear equations of equilibrium. The effects of plate parameters and foundation parameters on buckling and postbuckling response of the plate are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号