首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active and highly stable oxide‐supported IrNiOx core–shell catalysts for electrochemical water splitting are presented. IrNix@IrOx nanoparticles supported on high‐surface‐area mesoporous antimony‐doped tin oxide (IrNiOx /Meso‐ATO) were synthesized from bimetallic IrNix precursor alloys (PA‐IrNix /Meso‐ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphasis was placed on Ni/NiO surface segregation under thermal treatment of the PA‐IrNix /Meso‐ATO as well as on the surface chemical state of the particle/oxide support interface. Combining a wide array of characterization methods, we uncovered the detrimental effect of segregated NiO phases on the water splitting activity of core–shell particles. The core–shell IrNiOx /Meso‐ATO catalyst displayed high water‐splitting activity and unprecedented stability in acidic electrolyte providing substantial progress in the development of PEM electrolyzer anode catalysts with drastically reduced Ir loading and significantly enhanced durability.  相似文献   

2.
Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm–2 at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.  相似文献   

3.
《中国化学》2017,35(9):1405-1410
Pd and Pdx Ni nanoparticles have been supported on reduced graphene oxide (Pd/rGO and Pdx Ni/rGO ) by using the microwave‐assisted heating method in glycol. The morphology, composition and electrochemical performance have been characterized by TEM , XRD , XPS and electrochemical methods. The XRD and XPS results show that there are no PdNi alloy particles formed in Pdx Ni/rGO and the composites exist mostly in the form of Pd0 and NiOOH species. The electrochemical results reveal that Pdx Ni/rGO synthesized from the feeding source of Pd and Ni with an atomic ratio of 4∶1 exhibits higher activity, better stability and smaller electron transfer resistance toward formic acid electro‐oxidation compared with commercial Pd/C, Pd/rGO and other Pdx Ni/rGO samples. The excellent electrocatalytic performance indicates that the addition of appropriate amount of Ni can greatly enhance the activity and stability of Pd catalysts for formic acid oxidation.  相似文献   

4.
An aerosol‐spray‐assisted approach (ASAA) is proposed and confirmed as a precisely controllable and continuous method to fabricate amorphous mixed metal oxides for electrochemical water splitting. The proportion of metal elements can be accurately controlled to within (5±5) %. The products can be sustainably obtained, which is highly suitable for industrial applications. ASAA was used to show that Fe6Ni10Ox is the best catalyst among the investigated Fe‐Ni‐Ox series with an overpotential of as low as 0.286 V (10 mA cm?2) and a Tafel slope of 48 mV/decade for the electrochemical oxygen evolution reaction. Therefore, this work contributes a versatile, continuous, and reliable way to produce and optimize amorphous metal oxide catalysts.  相似文献   

5.
The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen‐evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen‐evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm?2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non‐precious metal catalysts afford a high efficiency of about 15 % for light‐driven water splitting using GaAs solar cells.  相似文献   

6.
Pyrolysis of a bimetallic metal–organic framework (MIL‐88‐Fe/Ni)‐dicyandiamide composite yield a Fe and Ni containing carbonaceous material, which is an efficient bifunctional electrocatalyst for overall water splitting. FeNi3 and NiFe2O4 are found as metallic and metal oxide compounds closely embedded in an N‐doped carbon–carbon nanotube matrix. This hybrid catalyst (Fe‐Ni@NC‐CNTs) significantly promotes the charge transfer efficiency and restrains the corrosion of the metallic catalysts, which is shown in a high OER and HER activity with an overpotential of 274 and 202 mV, respectively at 10 mA cm?2 in alkaline solution. When this bifunctional catalyst was further used for H2 and O2 production in an electrochemical water‐splitting unit, it can operate in ambient conditions with a competitive gas production rate of 1.15 and 0.57 μL s?1 for hydrogen and oxygen, respectively, showing its potential for practical applications.  相似文献   

7.
A series of Ir1–xNixO2–y (0 ≤ x ≤ 0.5) composite oxides have been prepared by a simple pyrolysis method in ethanol system and used as the electrocatalysts for OER in acidic medium. The materials have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The electrochemical performances of these Ir1–xNixO2–y composite catalysts are evaluated by cyclic voltammetry (CV) and steady-state measurements. The resulting oxides with the Ni content (x) less than 0.3 have a complex nature of metal Ir and rutile structure IrO2 which is similar to the Ir oxide prepared by the same approach and possess the contracted lattice resulted from the Ni-doping. Although the addition of Ni reduces the electroactive surface areas due to the coalescence of particles, the catalytic activity of the Ir1–xNixO2–y (0 < x ≤ 0.3) catalysts is slightly higher than that of the pyrolyzed Ir oxide. Regardless of the surface area difference, the intrinsic activity first increases and then decreases with the Ni content in Ir1–xNixO2–y catalysts, and the intrinsic activity of Ir0.7Ni0.3O2–y catalyst is about 1.4 times of the Ni-free Ir oxide mainly attributed to the enhancement of conductivity and a change of the binding energy as increasing amount of the incorporated Ni with respect to the pure IrO2. The Ir0.7Ni0.3O2–y catalyst shows a prospect of iridium-nickel oxide materials in reducing the demand of the expensive Ir oxide catalyst for OER in acidic water electrolysis.  相似文献   

8.
Cost‐effective and highly‐efficient electrocatalysts for the oxygen evolution reaction are crucial for electrolytic hydrogen production. Here, we report core–shell NiO@Ni‐P nanosheet arrays as a high‐performance 3D catalyst for water oxidation electrocatalysis. Such nanoarrays demand overpotentials of 292 and 350 mV to drive geometrical catalytic current densities of 10 and 100 mA cm?2, respectively, with an activity superior to its NiO and Ni‐P counterparts. Notably, this catalyst also shows a high long‐term electrochemical durability with a Faradaic efficiency of 98.1 %. Density functional theory calculation reveals that the superior activity benefits from the synergistic effect between NiO and Ni‐P.  相似文献   

9.
A core‐shell structure with CuO core and carbon quantum dots (CQDs) and carbon hollow nanospheres (CHNS) shell was prepared through facile in‐situ hydrothermal process. The composite was used for non‐enzymatic hydrogen peroxide sensing and electrochemical overall water splitting. The core‐shell structure was established from the transmission electron microscopy image analysis. Raman and UV‐Vis spectroscopy analysis confirmed the interaction between CuO and CQDs. The electrochemical studies showed the limit of detection and sensitivity of the prepared composite as 2.4 nM and 56.72 μA μM?1 cm?2, respectively. The core‐shell structure facilitated better charge transportation which in turn exhibited elevated electro‐catalysis towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting. The overpotential of 159 mV was required to achieve 10 mA cm?2 current density for HER and an overpotential of 322 mV was required to achieve 10 mA cm?2 current density for OER in 1.0 M KOH. A two‐electrode system was constructed for overall water splitting reaction, which showed 10 and 50 mA cm?2 current density at 1.83 and 1.96 V, respectively. The prepared CuO@CQDs@CHNS catalyst demonstrated excellent robustness in HER and OER catalyzing condition along with overall water splitting reaction. Therefore, the CuO@CQDs@CHNS could be considered as promising electro‐catalyst for H2O2 sensing, HER, OER and overall water splitting.  相似文献   

10.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   

11.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

12.
An efficient strategy (enhanced metal oxide interaction and core–shell confinement to inhibit the sintering of noble metal) is presented confined ultrathin Pd‐CeOx nanowire (2.4 nm) catalysts for methane combustion, which enable CH4 total oxidation at a low temperature of 350 °C, much lower than that of a commercial Pd/Al2O3 catalyst (425 °C). Importantly, unexpected stability was observed even under harsh conditions (800 °C, water vapor, and SO2), owing to the confinement and shielding effect of the porous silica shell together with the promotion of CeO2. Pd‐CeOx solid solution nanowires (Pd‐Ce NW) as cores and porous silica as shells (Pd‐CeNW@SiO2) were rationally prepared by a facile and direct self‐assembly strategy for the first time. This strategy is expected to inspire more active and stable catalysts for use under severe conditions (vehicle emissions control, reforming, and water–gas shift reaction).  相似文献   

13.
A series of Fe?Ni mixed‐oxide catalysts were synthesized by using the sol–gel method for the reduction of NO by CO. These Fe?Ni mixed‐oxide catalysts exhibited tremendously enhanced catalytic performance compared to monometallic catalysts that were prepared by using the same method. The effects of Fe/Ni molar ratio and calcination temperature on the catalytic activity were examined and the physicochemical properties of the catalysts were characterized by using XRD, Raman spectroscopy, N2‐adsorption/‐desorption isotherms, temperature‐programmed reduction with hydrogen (H2‐TPR), temperature‐programmed desorption of nitric oxide (NO‐TPD), and X‐ray photoelectron spectroscopy (XPS). The results indicated that the reduction behavior, surface oxygen species, and surface chemical valence states of iron and nickel in the catalysts were the key factors in the NO elimination. Fe0.5Ni0.5Ox that was calcined at 250 °C exhibited excellent catalytic activity of 100 % NO conversion at 130 °C and a lifetime of more than 40 hours. A plausible mechanism for the reduction of NO by CO over the Fe?Ni mixed‐oxide catalysts is proposed, based on XPS and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses.  相似文献   

14.
Underpotential photodeposition of Pb yields an ultrathin shell layer on the Au(111) surface of Au nanoparticle(NP)‐loaded TiO2 (Au/TiO2) with heteroepitaxial nanojunctions. The localized surface plasmon resonance of Au/TiO2 undergoes no damping with the Pb‐shell formation, and the Pb shell offers resistance to aerobic oxidation. Mesoporous films comprising the Au(core)–Pb(shell) NP‐loaded TiO2 and unmodified Au/TiO2 were formed on fluorine‐doped tin oxide (FTO) electrode. Using them as the photoanode, photoelectrochemical cells were fabricated, and the photocurrent was measured under illumination of simulated sunlight. The photocurrent for water splitting is dramatically enhanced by the Pb‐shell formation. The photoelectrochemical measurements of the hot‐electron lifetime and density functional theory calculations for model clusters indicate that the Pb‐shell effect originates from the charge separation enhancement.  相似文献   

15.
The state of water confined in Aerosol‐OT–hydrocarbon–water reverse micelles with cyclohexane, n‐pentane, n‐octane, and n‐dodecane as apolar solvents is investigated by small‐angle X‐ray scattering and near‐infrared vibrational spectroscopy of the first overtone of the OH stretching mode of water. The experiments focus on water/AOT molecular ratios W0=2–20, where water is strongly affected by the confinement and surface–water interactions. The pair‐distance distribution functions derived from the small‐angle scattering patterns allows a detailed characterization of the topology of these systems, and they indicate deviations from monodisperse, spherical water pools for some of these hydrocarbon systems. In contrast to a common assumption, the pool size does not scale linearly with W0 in going from dry reverse micelles (W0→0) to essentially bulk‐like water (W0>20). The first overtone of the OH‐stretching vibration exhibits highly structured spectra, which reveal significant changes in the hydrogen bonding environment upon confinement. The spectra are rationalized by a core/shell model developed by Fayer and co‐workers. This model subdivides water into core water in the interior of the micelle and shell water close to the interface. Core water is modelled by the properties of bulk water, while the properties of shell water are taken to be those of water at W0=2. The model allows the representation of the spectra at any hydration level as a linear combination of the spectra of core and shell water. Different approaches are critically reviewed and discussed as well.  相似文献   

16.
Bis(1,5‐cyclooctadiene) nickel [Ni(COD)2] was employed as a nickel precursor to prepare nickel oxide nanoparticles upon high‐surface‐area mesoporous silica. Under protection of argon, Ni(COD)2 was dissolved in tetrahydrofuran (THF) to react with surface silanols of mesoporous silica SBA‐15, which formed a black powder after completion of the surface reaction. Calcination of the powder produced ultrafine NiO inside the mesoporous silica matrix, which was evidenced by X‐ray diffraction, N2 adsorption–desorption, transmission electron microscopy and thermogravimetric analysis. The thermogravimetric analysis suggests that NiO formation is a result of surface nickel species calcination, whereas structural characterization clearly show that NiO nanoparticles of <5 nm are evenly distributed inside the silica SBA‐15 matrix and mesoporosity is well preserved upon calcinations and NiO formation. The surface reaction between Ni(COD)2 and surface silanols was found for the first time, and the method used here may be extended conveniently to prepare other metal oxide nanoparticles upon high‐surface‐area supports as well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A series of large scale MxCo3?xO4 (M=Co, Ni, Zn) nanoarray catalysts have been cost‐effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first‐principles calculations) toward low‐temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption–desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.  相似文献   

18.
Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual‐functional Ni catalysts supported on sulfonated carbon (Ni/C‐SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C‐SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C‐SO3H only catalysed the reduction of phenol to cyclohexanol in water. The state of 3–5 nm grafted Ni particles was analysed by in situ X‐ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C‐SO3H are inhibited in the presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C‐SO3H with the Ni/C‐SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt % C‐SO3H to the most active of the Ni/C‐SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90 %) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support.  相似文献   

19.
Ternary core–shell heterostructured rutile@anatase@CrxOy nanorod arrays were elaborately designed as photoanodes for efficient photoelectrochemical water splitting under visible‐light illumination. The four‐fold enhanced and stabilized visible‐light photocurrent highlights the unique role of the interim anatase layer in accelerating the interfacial charge transfer from the CrxOy chromophore to rutile nanorods.  相似文献   

20.
A novel strategy to improve the sensitivity of molecularly imprinted polymer (MIP) sensors was proposed for the determination of β2‐agonists. The imprinted sol‐gel film was prepared by mixing silica sol with a functional monomer of antimony‐doped tin oxide (ATO) and a template of β2‐agonists. ATO, which was embedded in the surface of the molecularly imprinted sol‐gel film, not only provides the excellent conductivity for biosensor but also increases the stability and the surface area of the MIP film. The imprinted sensor was characterised by field emission scanning electron microscope, fourier transform infrared spectroscopy and electrochemical methods. Under the optimal experimental conditions, the peak current was linear with the logarithm of the concentration of clenbuterol (CLB) in the range of 5.5 nM–6.3 µM, and a detection limit of 1.7 nM was obtained. Meanwhile, the electrochemical sensor showed excellent specific recognition of the template molecule among structurally similar coexisting substances. Furthermore, the proposed sensor was satisfactorily applied to determine β2‐agonists in human serum samples. The good results indicated that highly effective molecularly imprinted sol‐gel films doped with ATO can be employed for other analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号