首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethyl cyanoacrylate (ECA) was polymerized radically in the presence of small amounts of trifluoroacetic acid as effective inhibitor of incidental anionic polymerization. Methyl methacrylate and other functional vinyl monomers (e.g., 2‐chloroethyl and 2‐bromoethyl methacrylate) were copolymerized with ECA, yielding linear ECA‐rich copolymers, which could readily undergo further modifications, for instance nucleophilic substitution with azide. In the presence of a disulfide‐containing dimethacrylate crosslinker and a chain transfer agent (CBr4) during the free radical copolymerizations of ECA with methacrylates, highly branched ECA‐based polymers containing disulfide groups at the branching points were obtained prior to gelation. The polymers degraded upon addition of reducing agents. The prepared polymers, which contained peripheral (chain end) alkyl bromide groups as well as pendant alkyl chloride or bromide groups were then reacted with sodium azide, affording azide‐containing polymers that were reacted with functional alkynes under copper‐catalyzed “click” chemistry conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3683–3693  相似文献   

2.
Various polysiloxanes bearing chlorobenzyl side groups were synthesized by the hydrolytic polycondensation of the 73:27 mol/mol mixture of [2‐(4‐chloromethylphenyl)ethyl] methyldichlorosilane and [1‐(4‐chloromethylphenyl)ethyl] methyldichlorosilane followed by the cationic equilibration or coequilibration with octamethylcyclotetrasiloxane, D4. 1,3‐Divinyltetramethyl‐disiloxane was used as the chain end blocker to obtain a vinyl–Si ended chlorobenzyl‐substituted polysiloxane. In some cases, the polymer was additionally treated with dimethylvinylchlorosilane to achieve full substitution of chain ends by the vinyl group. Cohydrolysis of the chlorobenzylic monomer mixture with dimethyldichlorosilane was also practiced. Multiblock copolymers were obtained by polyhydrosilylation of the α,ω‐divinylsilyl chlorobenzyl‐substituted polysiloxanes with α,ω‐dihydrosilyl polydimethylsiloxanes. All these polymers and copolymers containing reactive chlorobenzylic groups were demonstrated to be convenient precursors of functional polysiloxanes of potential practical use. Some specific functional groups, such as quaternary ammonium salt groups of biocidal activity or azobenzene groups making the polymer sensitive to external stimuli by light, may be readily generated on polysiloxane under mild conditions. The chlorobenzylic substituted polysiloxanes may be also used as macroinitiators of the atom transfer radical polymerization, to obtain polysiloxanes with grafted organic polymers, such as styrene, 4‐chloromethylstyrene, and n‐butylacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1682–1692, 2004  相似文献   

3.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

4.
Photo‐induced thiol‐ene crosslinked polymeric networks have been extensively explored in constructing a variety of new materials with enhanced mechanical properties for optical, biomedical, and sensing applications. Toward the broad applications, however, tunable mechanical properties are greatly desired. Here, an effective approach utilizing high‐molecular‐weight methacrylate copolymers having pendant thiol and vinyl groups (MCPsh and MCPenes) to modulate thermal and mechanical properties of photo‐induced thiol‐ene crosslinked materials is reported. The MCP copolymers are synthesized by an industrially friendly polymerization method, followed by post‐modification including either a facile coupling reaction or reductive cleavage. Upon UV irradiation, thiol‐ene reactive blends of MCPsh and MCPenes yield highly crosslinked materials through the formation of flexible sulfide linkages. These polysulfide‐crosslinked materials based on rigid MCP backbones exhibit enhanced mechanical properties. Further, their thermal and mechanical properties are tuned by modulating monomer compositions of MCPs as well as varying numbers of pendant SH or vinyl groups (i.e., extent of crosslinking densities). This approach is versatile and effective for development of high performance polymeric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3060–3068  相似文献   

5.
Redox‐active anthraquinone based polymers are synthesized by the introduction of a polymerizable vinyl and ethynyl group, respectively, resulting in redox‐active monomers, which electrochemical behaviors are tailored by the modification of the keto groups to N‐cyanoimine moieties. These monomers can be polymerized by free radical polymerization and Rh‐catalyzed polymerization methods, respectively. The resulting polymers are obtained in molar masses (Mn) of 4,400 to 16,800 g mol?1 as well as high yields of up to 97%. The monomers and polymers are furthermore electrochemically characterized by cyclic voltammetry. The monomers exhibit two one‐electron redox reactions at about ?0.6 and ?1.0 V versus Fc+/Fc. The N‐cyanoimine units are, however, partially hydrolyzed during the polymerization step or during the electrochemical measurements and degenerate to carbonyl groups, resulting in a new reduction signal at ?1.26 V versus Fc+/Fc. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1998–2003  相似文献   

6.
The homopolymer (PGMA) of glycidyl methacrylate (GMA) and the copolymer of GMA with N‐vinyl‐2‐pyrrolidone were prepared under radical conditions and employed for the fixation of CO2 with LiBr as a catalyst, in which the oxirane groups were transformed into five‐membered cyclic carbonate groups. For the fixation of CO2 into the oxirane groups on PGMA, poly(N‐vinyl‐2‐pyrrolidone), in which the catalyst was impregnated before the reaction, was found to be an effective additive. This was exploited for the reaction using the copolymer containing both the oxirane and pyrrolidone moieties. The oxirane groups on the copolymer were also converted readily to the cyclic carbonates through the fixation of CO2. In such use of the pyrrolidone structures on the polymers, the fixation of CO2 could be carried out effectively in a diluted chlorobenzene solution and also under solvent‐free conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4578–4585, 2005  相似文献   

7.
A facile, efficient approach for preparation of functionalized aromatic polysulfones by postpolymerization modification with thiol‐ene click chemistry is described. The key synthetic strategy is to incorporate a pendant vinyl ether group into polysulfones as a reactive precursor with controlled degrees of functionalization. Synthetic utility of the pendant alkenyl group is demonstrated by generating diverse polymer derivatives using thiol‐ene functionalization including glycosylated polysulfone. The highly reactive alkene platform in the polymer affords convenient, metal‐free, and azide‐free click transformations to create diverse ranges of new functionalized polysulfones that could be applied in various applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3237–3243  相似文献   

8.
Remarkable enhancement of CO2‐derived poly(propylene carbonate) (PPC) against thermal decomposition was achieved by cyclization of linear PPCs. Thus, a CO2‐derived linear vinyl‐telechelic PPC was synthesized by CO2–propylene oxide alternating copolymerization initiated from H2O followed by an end‐capping esterification with 4‐pentenoic acid. Cyclic PPC was synthesized by the end‐to‐end intramolecular reaction of the vinyl‐telechelic linear PPC by metathesis condensation. Comparison of the thermal decomposition temperature (Td) with linear and cyclic PPCs confirms surprisingly enhanced Tds of cyclic PPCs. The elimination of chain ends through cyclization is indeed valuable for enhancing Td of CO2‐derived PPCs and thus turn the spotlight on the materials design utilizing CO2. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3336–3342  相似文献   

9.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

10.
A series of epoxy‐functional telechelic oligomers containing oxetane end groups have been synthesized. The precursor monomer, extracted from outer Birch bark, was first polymerized through enzyme‐catalyzed esterification to form oligomers having epoxy and/or oxetane groups in the structures. The oligoesters were subsequently crosslinked through cationic polymerization either by epoxy or oxetane homopolymerization or copolymerization when both functionalities were present. A study of the polymerizations of the resins was performed “in situ” using real‐time Fourier transform infrared spectroscopy revealing a preferred copolymerization when compared with the homopolymerization. By tailoring the different structures, it was possible to control the final mechanical properties of the networks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2258–2266  相似文献   

11.
Sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used as a facile and quantitative method for modifying end‐groups on an N‐isopropylacrylamide (NIPAm) homopolymer. A well‐defined precursor of polyNIPAm (PNIPAm) was prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in DMF at 70 °C using the 1‐cyano‐1‐methylethyl dithiobenzoate/2,2′‐azobis(2‐methylpropionitrile) chain transfer agent/initiator combination yielding a homopolymer with an absolute molecular weight of 5880 and polydispersity index of 1.18. The dithiobenzoate end‐groups were modified in a one‐pot process via primary amine cleavage followed by phosphine‐mediated nucleophilic thiol‐ene click reactions with either allyl methacrylate or propargyl acrylate yielding ene and yne terminal PNIPAm homopolymers quantitatively. The ene and yne groups were then modified, quantitatively as determined by 1H NMR spectroscopy, via radical thiol‐ene and radical thiol‐yne reactions with three representative commercially available thiols yielding the mono and bis end functional NIPAm homopolymers. This is the first time such sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used in polymer synthesis/end‐group modification. The lower critical solution temperatures (LCST) were then determined for all PNIPAm homopolymers using a combination of optical measurements and dynamic light scattering. It is shown that the LCST varies depending on the chemical nature of the end‐groups with measured values lying in the range 26–35 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3544–3557, 2009  相似文献   

12.
Amphiphilic copolymers were obtained by grafting arborescent poly(γ‐benzyl l ‐glutamate) (PBG) cores of generations G1–G3 with polyglycidol, poly(ethylene oxide) (PEO), or poly(l ‐glutamic acid) (PGA) chain segments. The PBG substrates were synthesized by two methods: (1) subjecting PBG samples with a dispersity ? = Mw/Mn < 1.1 to partial acidolysis of the benzyl ester groups, to produce randomly distributed carboxylic acid functionalities, and (2) using PBG chains containing a glutamic acid di‐tert‐butyl ester initiator fragment in the last grafting cycle of the PBG core synthesis, and selective acidolysis of the tert‐butyl ester groups to obtain substrates with carboxylic acid termini. Linear polymers with ? < 1.20 and a primary amine terminus were also synthesized to serve as hydrophilic shell materials: Polyglycidol and PEO by anionic polymerization, and PGA by N‐carboxyanhydride ring‐opening polymerization. These polymers, combined with the two different PGB substrate types, allowed the evaluation of the usefulness of random versus chain‐end grafting in producing arborescent copolymers useful as unimolecular micelles in organic and aqueous media. Size exclusion chromatography served to determine the grafting yield, molar mass, dispersity, and branching functionality of the copolymers. Dynamic light scattering measurements provided information on their aggregation behavior in aqueous environments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1197–1209  相似文献   

13.
Base‐catalyzed reaction between a thiol and an epoxide group is a simple fusion process that leads to the formation of a β‐hydroxythio‐ether linkage. This reaction is efficient, regio‐selective, and fast. In addition, it produces a reactive hydroxyl group upon completion. Therefore, it is of considerable potential in synthesis of reactive and functional soft materials. Here, we discuss the fundamental aspects of this process, the so‐called thiol‐epoxy “click” reaction, and its utility in the preparation and post‐polymerization functionalization of polymers and crosslinked networks. Furthermore, its application in surface modification of solid substrates is also considered. Finally, utility of multifunctional materials created using the thiol‐epoxy reaction is discussed in the biomedical arena. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3057–3070  相似文献   

14.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   

15.
The interaction of Cu2+ ions with the homopolymer poly(styrene sulfonic acid) (PSSH), as well as with the copolymers of maleic acid (MAc) with styrene sulfonic acid (SSH) or vinyl acetate (VAc), was investigated in dilute aqueous solution through turbidimetry, potentiometry, viscometry, and spectrophotometry in the visible region. Cu2+ ions were introduced either through neutralization with Cu(OH)2 of the acid form of the (co)polymers (PSSH, P(SSH‐co‐MAc) and P(VAc‐co‐MAc)) or through mixing of the sodium salt form of the (co)polymers (PSSNa, P(SSNa‐co‐MANa) and P(VAc‐co‐MANa)) with CuSO4. Turbidimetry, potentiometry, and spectrophotometry revealed that the first carboxylic group of MAc or both carboxylate groups of MANa are involved in the complexation with Cu2+ ions when neutralization with Cu(OH)2 or mixing with CuSO4 are applied, respectively. The increased values of the reduced viscosity observed mainly at the first stages of neutralization of P(VAc‐co‐MAc) with Cu(OH)2 indicate that interchain polymer‐Cu2+ complexation takes possibly place. Finally, the spectrophotometric behavior observed upon neutralization of P(SSH‐co‐MAc) with Cu(OH)2 or mixing of P(SSNa‐co‐MANa) with CuSO4 revealed that the strength of counterion binding by the sulfonate groups is, in fact, comparable with the complexation of Cu2+ ions with the carboxylate groups of MAc. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1149–1158, 2008  相似文献   

16.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

17.
1,3‐Dithiane and its derivatives are widely used as powerful acyl anion equivalent to a range of useful transformations that are needed in the synthesis of natural products. In this work, a series of polyolefins containing pendant dithiane groups have been designed and synthesized via acyclic diene metathesis polymerization (ADMET) polymerization and subsequent hydrogenation. The structures of these polymers were characterized by 1H NMR, 13C NMR, and FT‐IR, and successful incorporation of the dithiane groups was proved. With different contents of the dithiane moieties, these ADMET polymers exhibited distinct thermal properties different from each other as evidenced by differential scanning calorimetry and thermal gravimetric analysis. The dithiane units in the ADMET polymer with 20 methylene carbons between the adjacent dithiane groups were transformed into thiol groups via reaction with Bu3SnH. This work provided a convenient route to synthesize polyethylene with pendant thiol groups that are evenly distributed in the chain. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2468–2475  相似文献   

18.
The effects of hydrophobic chain end groups on the cloud points of thermo‐sensitive water‐soluble polystyrenics were investigated. Well‐defined poly (4‐vinylbenzyl methoxytris(oxyethylene) ether) (PTEGSt) and poly(α‐hydro‐ω‐(4‐vinylbenzyl)tetrakis(oxyethylene)) (PHTrEGSt) were prepared by nitroxide‐mediated radical polymerization using α‐hydrido alkoxyamine initiators including two monomer‐based initiators. The polymers were reduced with (n‐Bu)3SnH to replace the alkoxyamine end group with hydrogen. In the studied molecular weight range (Mn,GPC = 3000 to 28,000 g/mol), we found that the hydrophobic end groups decreased the cloud point by 1–20 °C depending on the molecular weight and the largest depression was observed at the lowest molar mass. The cloud points of PTEGSt and PHTrEGSt with two hydrophobic end groups, phenylethyl and alkoxyamine, exhibited a monotonic increase with the increase of molecular weight. For polymers with only one hydrophobic end group, either phenylethyl or alkoxyamine, the cloud point initially increased with the increase of molecular weight but leveled off/decreased slightly with further increasing molar mass. For polymers with essentially no end groups, the cloud point decreased with the increase of chain length, which represents the “true” molecular weight dependence of the cloud point. The observed molecular weight dependences of the cloud points of polystyrenics with hydrophobic end group(s) are believed to result from the combined end group effect and “true” molecular weight effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3707–3721, 2007  相似文献   

19.
Photoorientation and reorientation processes induced by illumination of the samples with oppositely directed polarized light and by the thermal treatment were studied for the films of triblock copolymer pAzo10‐b‐pPhM80‐b‐pAzo10 consisting of a nematic phenyl benzoate сentral sub‐block (PhM, DP = 80) with two terminal smectic azobenzene sub‐blocks (Azo, DP = 10). For amorphized films of triblock copolymer, illumination with polarized light (λ = 546 nm) is shown to be by orientation of only Azo‐containing groups, but upon following annealing of the film, PhM groups are adjusted to the orientation of Azo fragments. It was found, that the subsequent illumination of the block copolymer sample with oppositely directed polarized light changes the orientation of azobenzene groups, while the orientation of phenyl benzoate groups is remained unchanged. Thus, the cyclic illumination of the triblock copolymer samples by the linear polarized light and subsequent thermal treatment make it possible to control and fix orientation of azobenzene and phenyl benzoate groups located in different sub‐blocks in the desired and independent manner. The comparison of these results with the data on random p(Azo7ran‐PhM30) copolymer of the similar composition revealed, that in the random copolymer, both Azo and PhM mesogenic groups are involved in the orientational cooperative process regardless of films process treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1602–1611  相似文献   

20.
This study is focused on the development of electrochromic (EC) materials that could be incorporated into electrically‐driven switchable devices such as electrochromogenic glasses. The ultimate goal of this research is to depart from the complexity of the EC device construction which is in use today. Such construction consists of three layers each of them incorporating a specific functionality: the electrochromophore, the electrolyte and the ion storage, assembled between two transparent or reflective electrodes. In most of these conventional devices the electrolyte layer is a liquid or a gel. Since solid‐state EC devices are of high commercial interest, we are exploring various avenues to reduce the number of layers to one layer that is all‐solid and electrochromically/electrolytically and ionically functional. The design strategy is based on the use of polymers such as poly(epichlorohydrin‐co‐ethylene oxide), poly(vinyl butyral) and poly(ethylene‐co‐methacrylic acid) ionomer, to which EC properties were introduced by grafting reactions with specifically synthesized carbazole derivatives. A combination of analytical techniques was used to characterize the monomers and the carbazole‐grafted polymers. A proof of concept was demonstrated for a single‐layer, all‐solid‐state EC device consisting of a film of poly(ECH‐co‐EO) containing pendent carbazole groups, assembled between two transparent electrodes, Sn‐doped In2O3 oxide‐coated glasses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号