首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL's impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 2‐fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a substantially high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL's modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 98–103  相似文献   

2.
The bulk order in donor–acceptor poly(benzodithiophene‐benzotriazole) was improved by two different post‐treatment procedures applied to the specimen. Two‐dimensional wide‐angle X‐ray scattering was used to investigate the structural changes after treatment. After post‐treatment the polymer turned into a highly crystalline morphology with well‐resolved and intensive π‐stacking reflections which were absent in the pristine sample. To understand the ordering mechanisms taking place during the two post‐treatment procedures, structural parameters like coherence length and paracrystallinity were extracted from the X‐ray data indicating the impact on crystallite size and cumulative lattice disorder. During temperature annealing the intralayer packing transforms from amorphous to highly ordered. On the other hand, solvent vapor annealing enhances in higher extent the interlayer organization due to interpenetration of solvent molecules between alkyl side chains. These results provide important insights for the morphology optimization of semicrystalline conjugated polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2327–2334.  相似文献   

3.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

4.
Printed electronics is a rapidly developing field of research which covers any electronic devices or circuits that can be processed using direct printing techniques. Among those printing techniques, inkjet printing is a technique of increasing interest for organic field‐effect transistors (FETs) due to its fully data driven and direct patterning. In this work, the morphology of semi‐conducting polymer/insulating polymer blends from inkjet printing and their FET properties have been investigated. We attempted to optimize the morphology of the blends by the addition of a co‐solvent to the blend solution prior to film deposition. By varying the boiling temperature of the co‐solvent, blend films are fabricated with varying domain purity and different degree of semi‐conducting polymer ordering. The morphologies of all the as‐cast samples from inkjet printing and subsequently thermally annealed samples are characterized by grazing incidence wide angle x‐ray scattering and small angle neutron scattering. The results indicate that the sample where a low boiling temperature co‐solvent is used exhibits a lower degree of semi‐conducting polymer ordering and less pure domains, resulting in a decrease of hole mobility. The morphologies that are formed when high boiling temperature co‐solvent is used, however, give a higher degree of semi‐conducting polymer ordering along with higher domain purity, significantly improving hole mobility up to 1.44 cm2 V?1 s?1 at VDS = 40 V. More importantly, with thermal annealing, all the samples exhibit similar semi‐conducting polymer ordering and domain sizes while the domain purity significantly varies. This work is a unique example that demonstrates the importance of domain purity in the optimization of morphology and FET performance, which is previous unavailable. It also provides a novel process that can efficiently control the morphology of semi‐conducting polymer/insulating polymer mixtures during deposition to maximize FET performance from inkjet printing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1760–1766  相似文献   

5.
We report the synthesis of phenylene(vinylene) based blue light emitting polymer by atom transfer radical polymerization with very good yield. Their photophysical properties were studied systematically with increasing polarities of solvent and sensing of nitro aromatics in solution and in vapor phase. The sensory properties of the polymer were studied toward various nitroaromatic compounds like nitrobenzene (NB), nitrotoluene (NT), dinitrobenzene (DNB), dinitrotoluene (DNT), nitro benzoic acid (NBA), 3‐nitro benzaldehyde (3‐NBA), trinitrotoluene (TNT), 4‐nitrophenol (NP), and picric acid (PA) in solution state. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3800–3807  相似文献   

6.
Conjugated polymers containing phenyl‐, pyridyl‐, and thiazolyl‐flanked diketopyrrolopyrrole (DPP) were synthesized by direct arylation polycondensation of 3,4‐ethylenedioxythiophene derivatives and dibrominated DPP‐based monomers, in order to probe the effects of the aromatic groups in the DPP units on the absorption property, energy level, and crystallinity. A polymer possessing thiazolyl‐flanked DPP units was found to display long‐wavelength absorption properties and higher crystallinity than the polymers bearing phenyl‐ and pyridyl‐flanked DPP units. These features of the thiazolyl‐based polymer were afforded by its coplanar structure of the main chain. The synthesized polymers showed semiconducting properties in organic field effect transistors and organic photovoltaics. Direct arylation polycondensation is an efficient synthetic method that affords a series of DPP‐based polymers in a simple fashion and, thus, helping in a comprehensive understanding on the relationship between the aromatic groups in DPP units and their physical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2337–2345  相似文献   

7.
A new experimental method for studying the mechano‐optical rheology of polymeric liquids and soft matter materials is presented. The method is based on a combination of rotational rheology and a recently developed optical technique—shear‐induced polarized light imaging (SIPLI). The method provides a unique opportunity to monitor a complete sample view during rheological measurements in plate–plate and cone‐and‐plate geometry. Applications of the method are presented including simultaneous SIPLI and the rheology of the oriented lamellar phase of block copolymers and liquid crystals as well as a study of the thermally induced reversible transformation of worm‐like micelles to spherical micelles. In addition, a direct relation between the shish formation and the polymer melt viscosity upturn during flow‐induced crystallization of semi‐crystalline polymers is demonstrated. An application of SIPLI for quantitative birefringence measurements is also shown. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2151–2170  相似文献   

8.
Composites based on biocompatible thermoplastic elastomer styrene‐ethylene/butylene‐styrene (SEBS) as matrix and multi‐walled carbon nanotubes (MWCNT) as nanofillers show excellent mechanical and piezoresistive properties from low to large deformations. The MWCNT/SEBS composites have been prepared following a green solvent approach, to extend their range of applicability to biomedical applications. The obtained composites with 2, 4, and 5 wt % MWCNT content provide suitable piezoresistive response up to 80% deformation with a piezoresistive sensibility near 2.7, depending on the applied strain and MWCNT content. Composite sensors were also developed by spray and screen printing and integrated with an electronic data acquisition system with RF communication. The possibility to accurately control the composites properties and performance by varying MWCNT content, viscosity, and mechanical properties of the polymer matrix, shows the large potential of the system for the development of large deformation printable piezoresistive sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2092–2103  相似文献   

9.
We outline a theory for the optical absorption of the β‐phase of poly(9,9‐dioctylfluorene) (PFO) that is based on the Frenkel exciton model. The absorption peak at 435 nm is attributed to polymer segments having torsion angles equal to π that are weakly perturbed by the presence of random monomer junctions with torsion angles equal to 0. The broad band below 435 nm is associated with disordered segments having a broad distribution of random torsion angles. The effects of small random deviations from π in the torsion angles are discussed. The calculations support the interpretation that the β‐phase is characterized by alternating segments of highly ordered and strongly disordered regions. PFO is a widely studied fluorene‐based polymer with interesting and potentially useful photophysical properties. In this work, Frenkel exciton states in the β‐phase of PFO are studied, and a two‐region model—weak torsional disorder and strong torsional disorder—is presented. The peak in the optical absorption at 435 nm is associated with the weakly disordered regions. The broad background in the absorption is attributed to the strongly disordered regions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1109–1111  相似文献   

10.
In this article the demixing instability and phase segregation in unentangled polymer solutions of semiflexible chains at high‐rate uniaxial extension above the coil to stretched coil transition was studied. Orientation of the stretched chains was described in terms of an effective potential field. Based on the free energy analysis it was shown that the flow‐induced orientation of polymer segments could drastically reduce the energy of their steric repulsion. As a result attraction between the chains gain more importance, and this effect lead to the demixing process and eventual segregation of polymer from the solvent if the strain rate exceeds some critical value. A mean‐field theory was developed to study this flow‐induced phase separation effect. The phase diagrams of the system showing the spinodal and binodal transitions at different extension rates were calculated and discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1066–1073  相似文献   

11.
Photochromic dyes have restricted use in rigid polycarbonates because of slow coloration and decoloration kinetics. In this study, it is shown that the decoloration kinetics of two photochromic dyes can be controlled by tuning the chain stiffness and free volume of the host matrix. The introduction of flexible moieties in rigid BPA‐based polycarbonate chain accelerates the decoloration of these dyes whereas a rigid co‐monomer delays the decoloration kinetics. Although Tg might be used as a parameter to improve photochromism in polymer matrices, dynamic mechanical analysis demonstrates that the decoloration kinetics of the dyes in host polymer matrices having similar Tg depends primarily on the secondary relaxations and, thus, on the polymer architecture. The effect of the co‐monomer type on the characteristic ratio is also discussed underlining the potential relationship between the free volume and chain stiffness. These results open the possibility to develop transparent or semitransparent photochromic materials based on tailor‐made co‐polycarbonates. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1593–1601  相似文献   

12.
Theories based on free‐volume concepts have been developed to characterize the self and mutual‐diffusion coefficients of low molecular weight penetrants in rubbery and glassy polymer‐solvent systems. These theories are applicable over wide ranges of temperature and concentration. The capability of free‐volume theory to describe solvent diffusion in glassy polymers is reviewed in this article. Two alternative free‐volume based approaches used to evaluate solvent self‐diffusion coefficients in glassy polymer‐solvent systems are compared in terms of their differences and applicability. The models can correlate/predict temperature and concentration dependencies of the solvent diffusion coefficient. With the appropriate accompanying thermodynamic factors they can be used to model concentration profiles in mutual diffusion processes that are Fickian such as drying of coatings. The free‐volume methodology has been found to be consistent with molecular dynamics simulations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
Poly(2‐oxazoline) (POx) based materials have experienced renewed interest, due to their biocompatibility and broad functional diversity. Although research pertaining to cationic ring opening polymerization (CROP) of 2‐oxazoline derivatives spans upwards of 5 decades, modern characterization techniques, specifically Matrix Assisted Laser‐Desorption Ionization—Time of Flight Mass Spectrometry (MALDI‐TOF MS), were not available during early studies to aid in identifying polymer end‐groups. Through careful synthesis and analytical characterization, evidence supports an alternative mode of nucleophilic attack during ammonia termination, with nucleophilic attack occurring at a different site on the terminal oxazolinium than where polymer propagation occurs. Furthermore, investigations employing targeted end‐group modification, in conjunction with MALDI and NMR analysis, determined the structure of the resultant terminal group was a hydroxyethylamino end group. Based on the observed data, a mechanistic explanation for the observed 2‐oxazoline ring‐opening termination is proposed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1303–1312  相似文献   

14.
Allyl ether‐functional polycarbonates, synthesized by organocatalytic ring‐opening polymerization of the six‐membered cyclic carbonate monomer 2‐allyloxymethyl‐2‐ethyltrimethylene carbonate, were used to prepare non‐polyether polymer electrolytes. UV‐crosslinking of the allyl side groups provided mechanically stable electrolytes with improved molecular flexibility—Tg below ?20 °C—and higher ionic conductivity—up to 4.3 × 10?7 S/cm at 25 °C and 5.2 × 10?6 S/cm at 60 °C—due to the plasticizing properties of the allyl ether side groups. The electrolyte function was additionally demonstrated in thin‐film Li battery cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2128–2135  相似文献   

15.
During the development of column extraction techniques, two methods of separation were identified. The first method is based on altering polymer solubility by varying the ratio of solvent in a solvent/nonsolvent mixture at a constant temperature above the polymer melting point (gradient solvent elution fractionation). This method fractionates polymers according to molecular weight. The second method is based on altering polymer solubility by varying solvent temperature (temperature rising elution fractionation—TREF). TREF fractionates semicrystalline polymers with respect to their crystallizability, independently of molecular weight effects. In the present article, supercritical propane will be used to fractionate a high‐density polyethylene sample by molecular weight and short chain branching. The main advantage of supercritical fluid fractionation is that large polymer fractions with narrow molecular weight distributions (isothermal fractionation) or narrow short chain branching distributions (isobaric fractionation) can be obtained without using hazardous organic chlorinated solvents. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 553–560, 1999  相似文献   

16.
We successfully synthesized new D‐A copolymers that employ 1,10‐bithienopyrrolodione (biTPD), thiophene, and selenophene‐based donor monomeric units. Two polymers, PBTPDEBT and PBTPDEBS , exhibited high degrees of crystallinity and unique polymer chain arrangements on the substrate, which is attributed to their enhanced coplanarity and intermolecular interactions between the polymer chains. Among the thin‐film transistor devices made of PBTPDEBT and PBTPDEBS , the annealed PBTPDEBS device displayed relatively high hole mobility, which was twice that of the PBTPDEBT ‐based device. In addition, an organic photovoltaic device based on a PBTPDEBS :PC71BM blend displayed the maximum power conversion efficiency of 3.85%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1228–1235  相似文献   

17.
Diketopyrrolopyrrole (DPP)‐based terpolymers—P(DPP‐TPyT) and P(DPP‐T3MTT)—bearing bithiophene donating groups and weak accepting units such as pyridine (Py) or methyl thiophene‐3‐carboxylate (3MT), in the polymer backbone, were successfully synthesized. Although the two polymers had similar physical and electrochemical properties, grazing incidence X‐ray diffraction patterns of P(DPP‐TPyT) and P(DPP‐T3MTT) showed mixed and edge‐on orientations, respectively, in thermally annealed films. Accordingly, the P(DPP‐T3MTT) showed twice the hole mobility of P(DPP‐TPyT) in a thin‐film transistor, and a blended film of P(DPP‐T3MTT) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) showed better power conversion efficiency in a polymer solar cell. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1339‐1347  相似文献   

18.
Grazing‐incidence X‐ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate crosslinking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of X‐ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam line instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10–60 s at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing‐incidence X‐ray “patterning” offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1074–1086  相似文献   

19.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

20.
Data on new modifications of supported titanium‐magnesium catalysts (TMCs) with improved performance in ethylene polymerization are reported. These catalysts possess a high and stable activity, an enhanced ability to regulate molecular weight of the polymer by hydrogen, a controllable particle size at a narrow particle size distribution, and the ability to produce the polymer with an increased bulk density. Various physicochemical methods were used to obtain data on the chemical composition of novel supports and catalysts, their phase composition and crystal structure as well as the pore structure. The results obtained were used to discuss possible correlations between composition and structure of TMCs and their catalytic properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2545–2558  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号