首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study a series of hyperbranched modified shape‐memory polymers were subjected to constrained shape recoveries in order to determine their potential use as thermomechanical actuators. Materials were synthesized from a diglycidyl ether of bisphenol A as base epoxy and a polyetheramine and a commercial hyperbranched poly(ethyleneimine) as crosslinker agents. Hyperbranched polymers within the structure of the shape‐memory epoxy polymers led to a more heterogeneous network that can substantially modify mechanical properties. Thermomechanical and mechanical properties were analyzed and discussed in terms of the content of hyperbranched polymer. Shape‐memory effect was analyzed under fully and partially constrained conditions. When shape recovery was carried out with fixed strain a recovery stress was obtained whereas when it was carried out with a constraining stress the material performs mechanical work. Tensile tests at TgE′ showed excellent values of stress and strain at break (up to 15 MPa and almost 60%, respectively). Constrained recovery performances revealed rapid recovery stress generation and unusually high recovery stresses (up to 7 MPa) and extremely high work densities (up to 750 kJ/m3). The network structure of shape‐memory polymers was found to be a key factor for actuator‐like applications. Results confirm that hyperbranched modified‐epoxy shape memory polymers are good candidates for actuator‐like shape‐memory applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1002–1013  相似文献   

2.
A new type of poly(methyl acrylate)‐co‐(acrylic acid) (PMA‐AA) networks obtained by combining hydrogen bonding with controlled crosslinking exhibit full and rapid shape‐memory recovery. The structure, thermal properties, dynamical mechanical properties and shape‐memory effects of these networks were presented. High modulus ratios were achieved for the series of PMA‐AA networks based on intense self‐complementary hydrogen bonding in poly(acrylic acid) (PAA) segments. This lead to excellent shape‐memory effects with strain‐recovery ratio above 99%. Meanwhile, faster recovery speed was achieved by the synergistic effect of hydrogen bonding and controlled crosslinking compared to the linear PMA‐AA copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1241–1245, 2011  相似文献   

3.
Poly(ε‐caprolactone) (PCL) with a pendent coumarin group was prepared by solution polycondensation from 7‐(3,5‐dicarboxyphenyl) carbonylmethoxycoumarin dichloride and α, ω‐dihydroxy terminated poly(ε‐caprolactone) with molecular weights of 1250, 3000, and 10,000 g/mol. These photosensitive polymers underwent a rapid reversible photocrosslinking upon exposure to irradiation with alternating wavelengths (>280/254 nm) without a photoinitiator. The thermal and mechanical properties of the photocrosslinked films were examined by means of differential scanning calorimetry and stress–strain measurements. The crosslinked films exhibited elastic properties above the melting temperature of the PCL segment along with significant decrease in the ultimate tensile strength and Young's modulus. Shape‐memory properties such as strain fixity ratio (Rf) and strain recovery ratio (Rr) were determined by means of a cyclic thermomechanical tensile experiments under varying maximum strains (εm = 100, 300, and 500%). The crosslinked ICM/PCL‐3000 and ‐10,000 films exhibited the excellent shape‐memory properties in which both Rf and Rr values were 88–100% for tensile strain of 100–500%; after the deformation, the films recovered their permanent shapes instantaneously. In vitro degradation was performed in a phosphate buffer saline (pH 7.2) at 37 °C with or without the presence of Pseudomonas cepacia lipase. The presence of the pendent coumarin group and the crosslinking of the polymers pronouncedly decreased the degradation rate. The crosslinked biodegradable PCL showing a good shape‐memory property is promising as a new material for biomedical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2422–2433, 2009  相似文献   

4.
Composites with excellent water‐induced shape‐memory effects (SMEs) were successfully synthesized by first using clay as the SME‐activating phase and thermoplastic polyurethane (TPU) as the matrix. Naturally abundant clay was grafted with poly(methacrylic acid) (PMAA) to improve particle interactions, which allowed for the formation of strong percolation networks in the composites, determined by swelling tests and dynamic mechanical analysis in combination with theoretical modeling. This led to significant improvements of the polymer modulus and high water absorptions, causing reversible modulus changes of up to 30 times from the wet to the dry condition. The results from cyclic wetting‐drying‐stretching tests showed the TPU–clay composite containing 10.4 vol % PMAA‐grafted clay exhibited the best SMEs among the composites investigated, with the shape fixity and shape recovery ratios being 82% and 91%, respectively. Besides SMEs, these new polymer–clay composites were also pH‐sensitive and mechanically adaptive upon exposure to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1513–1522  相似文献   

5.
Multiblock copolymers named PCL‐PIBMD consisting of crystallizable poly(ε‐caprolactone) segments and crystallizable poly[oligo(3Siso‐butylmorpholine‐2,5‐dione)] segments coupled by trimethyl hexamethylene diisocyanate provide a versatile molecular architecture for achieving shape‐memory effects (SMEs) in polymers. The mechanical properties as well as the SME performance of PCL‐PIBMD can be tailored by the variation of physical parameters during programming such as deformation strain or applied temperature protocols. In this study, we explored the influence of applying different strain rates during programming on the resulting nanostructure of PCL‐PIBMD. Programming was conducted at 50 °C by elongation to εm = 50% with strain rates of 1 or 10 or 50 mm min?1. The nanostructural changes were visualized by atomic force microscopy (AFM) measurements and investigated by in situ wide and small angle X‐ray scattering experiments. With increasing the strain rate, a higher degree of orientation was observed in the amorphous domains. Simultaneously the strain‐induced formation of new PIBMD crystals as well as the fragmentation of existing large PIBMD crystals occurred. The observed differences in shape fixity ratio and recovery stress of samples deformed with various strain rates can be attributed to their different nanostructures. The achieved findings can be relevant parameters for programming the shape‐memory polymers with designed recovery forces. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1935–1943  相似文献   

6.
In this article, programming is classified as hot, warm, and cold, based on the temperature zone within which the programming is conducted. The strain and stress locking and releasing mechanisms are discussed within the thermodynamics framework. A new formula is developed for quantifying the strain recovery ratio of cold-programmed SMPs. Stress fixity ratio and stress recovery ratio are also defined based on the understanding of stress locking and recovery mechanisms. State-of-the-art literature on warm and cold programming is reviewed. Well-controlled programming as well as free strain recovery test and constrained stress recovery test are conducted, in order to validate the memory mechanisms discussed in this study. It is found that, while programming temperature has an insignificant effect on the final free shape recovery, it has a significant effect on the stress recovery. The recovery stress programmed by cold programming may be lower, equal to, or higher than that by hot programming, due to the different stress locking mechanisms and other factors such as damage during the thermomechanical cycle. Cold, Warm, and Hot Programming of Shape Memory Polymers © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1319–1339  相似文献   

7.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

8.
In this work, the stress recovery behavior of shape memory polyurethane (SMPU) fiber was investigated. The as‐spun SMPU fibers were subjected to various programing‐recovery conditions. It was observed that recovering at 100 °C generated higher recovery stress than recovering at 150 °C. It was also found that, while hot‐drawn programed fiber has higher recovery stress than cold‐drawn programed fiber if recovered at 100 °C, cold‐drawn programed fiber has higher stabilized recovery stress than hot‐drawn programed counterpart when recovered at 150 °C. A morphological model was proposed based on the results from differential scanning calorimetry, Fourier transform infrared spectrometry, and X‐ray diffraction to understand the physics behind the different stress recovery behaviors. It is found that SMPU experiences different phase transitions and phase separations under different programing and stress recovery conditions. It is concluded that the two sequential phase separations taking place at 100 and 150 °C are primarily responsible for the differences in the stress recovery behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1429–1440  相似文献   

9.
We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight, and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa, and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in vitro cell activation induced by the foam compared with controls demonstrates low acute bio‐reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Poly(l ‐lactic acid) (PLLA) is a bio‐degradable polyester which exhibits brittle behaviour due to relatively fast physical ageing of the amorphous phase. This work describes the effects of thermal rejuvenation and molecular orientation of the amorphous phase on this physical ageing process. Uniaxial compression testing showed that physical ageing of the amorphous phase increases the yield stress and the associated strain softening response, both contributing to the observed embrittlement of PLLA in tension. Molecular orientation at constant crystallinity was applied by uniaxial and biaxial plastic deformation just above the glass transition temperature, up to plastic strains of 200% to avoid strain‐induced crystallisation. Using stress‐relaxation experiments combined with tensile testing, both as a function of ageing time, it is shown that both uniaxial and biaxial plastic deformation in excess of 150% plastic strain, decelerates and possibly prohibits the physical ageing process. The oriented monofilaments and films have improved mechanical properties such as stiffness, strength and strain‐to‐break, which were not affected by physical ageing during the whole testing period (40 days). In addition, plastic deformation to higher draw ratios and/or higher temperatures strongly enhanced crystallinity and resulted in PLLA monofilaments and films that also exhibited tough behaviour, not affected by physical ageing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2233–2244  相似文献   

11.
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005  相似文献   

12.
The thermo‐mechanical response of heat activated shape memory polymers (SMPs) has been investigated using a thermo‐viscoelastic finite element analysis that accounts for external and internal heat sources. SMPs can be thermally stimulated by external heat sources, such as temperature and surface heat flux, or from internal viscous heating. Viscous heating can significantly affect the response of SMP sheets by increasing the temperature during pre‐strain, which accelerates stress relaxation. This stress relaxation results in a slower shrinking rate when the SMP is reheated. Viscous heating also causes an increase in temperatures during unconstrained recovery. The predicted results elucidate how the coupled thermo‐mechanical loading conditions affect folding and unfolding of SMP sheets in response to localized heating in a hinged region. A parametric study of sheet thickness, hinge width, degree of pre‐strain, and hinge surface temperature is also conducted. The validated results can provide guidelines for the design of functional, self‐folding structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1207–1219  相似文献   

13.
A series of shape memory polyurethanes were synthesized from poly(tetramethylene glycol), 4,4‐methylene diphenyl diisocyanate, and 1,3‐butanediol. The prepolymers with different molecular weights (Mc) were capped with 2‐hydroxyl ethylacrylate or 3‐aminopropyltriethoxysilane (APTES) and crosslinked by UV curing or a sol–gel reaction. Variations of the crosslinker functionality (f), subchain density (N), and hard segment content (HSC) produced systematic variations of the glass transition temperature (6–45 °C), accompanied by changes in the mechanical, dynamic mechanical and shape memory properties. More than 95% of shape fixity and 98% of shape recovery up to the fourth cycles were obtained with APTES crosslinked 3000Mc with 30% of HSC. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1473–1479  相似文献   

14.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

15.
Similar to shape memory, the stress in a stimulus responsive polymer can also be programmed, stored, and retrieved reversibly upon an external stimulus, and known as stress memory. Herein, the stress analysis in a semicrystalline polyurethane is investigated to unveil the total stress–strain components of the memory polymer. The evolution of stress under different temperature and strain levels is determined experimentally. A constitutive model based on phase transition was further used to predict and characterize the individual stress components during the thermomechanical process. In contrast to earlier models, a new approach of using relaxed modulus (RM) has been proposed to predict the stress components in tensile programming condition. The predicted results are having significant agreement with the experimental data. The quantitative stress analysis can help in engineering the products more precisely, where the controllable stimulus responsive stress is needed in multidisciplinary arenas such as pressure garments, massage devices, and artificial muscles etc. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 941–947  相似文献   

16.
The research activities in the development of recyclable and reprocessable covalently crosslinked networks, and the construction of polymers from renewable resources are both stemmed from the economical and environmental problems associated with traditional thermosets. However, there is little effort in combination of these two attractive strategies in material designs. This article reported a bio‐based vitrimer constructed from isosorbide‐derived epoxy and aromatic diamines containing disulfide bonds. The resulted dynamic epoxy resins showed comparable thermomechanical properties as compared to similar epoxy networks cured by traditional curing agent. Rheological tests demonstrated the fast stress relaxation of the dynamic network due to the rapid metathesis of disulfide bonds at temperature higher than glass transition temperature. This feature permitted the recycling and reprocessing of the fragmented samples for several times by hot press. The dynamic epoxy resins also exhibited shape‐memory effect, and it is demonstrated that the shape recovery ratio could be readily adjusted by controlling the stress relaxation in the temporary state at programming temperature. Moreover, the degradability of the dynamic epoxy resins in alkaline aqueous solution was also demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1790–1799  相似文献   

17.
Double‐network (DN) gels subjected to cyclic deformation (stretching up to a fixed strain followed by retraction down to the zero stress) demonstrate a monotonic decrease in strain with time (self‐recovery). Observations show that the duration of total recovery varies in a wide interval (from a few minutes to several days depending on composition of the gel), and this time is strongly affected by deformation history. A model is developed for the kinetics of self‐recovery. Its ability to describe stress–strain diagrams in cyclic tests with various periods of recovery is confirmed by comparison with observations on several DN gels. Numerical simulation reveals pronounced enhancement of fatigue resistance in multi‐cycle tests with stress‐ and strain‐controlled programs when subsequent cycles of deformation are interrupted by intervals of recovery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 438–453  相似文献   

18.
The effects of thermal expansion on shape memory performance of shape memory polyurethanes and their nanocomposites with organoclay, carbon nanofiber (CNF), silicon carbide (SiC), and carbon black (CB) were evaluated. The shape memory test cycle involved tensile deformation at above the trigger temperature to initiate shape memory function, cooling to room temperature to fix the shape, and shape recovery induced by heating to above the trigger temperature. Phenomenological models were used to interpret the experimental data on coefficient of thermal expansion (CTE). It was found that Kerner model showed good fit for composites of SiC and CB, and Halpin model gave better fit for composites of organoclay and CNF. It was observed that thermal expansion exerts negative effect on recovered strain, the extent of which depends on the magnitude of temperature gradient, CTE, and the level of tensile strain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1437–1449, 2008  相似文献   

19.
Alginate hydrogels are polysaccharide biopolymer networks widely useful in biomedical and food applications. Here, we report nonlinear mechanical responses of ionically crosslinked alginate hydrogels captured using large amplitude oscillatory shear experiments. Gelation was performed in situ in a rheometer and the rheological investigations on these samples captured the strain‐stiffening behavior for these gels as a function of oscillatory strain. In addition, negative normal stress was observed, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with the applied strain amplitude and can exceed that of the shear stress at large‐strain. Fitting a constitutive relationship to the stress‐strain curves reveals that the mode of deformation involves stretching of the alginate chains and bending of both the chains and the junction zones. The contribution of bending increases near saturation of G blocks as Ca2+ concentration was increased. The results presented here provide an improved understanding of the deformation behavior of alginate hydrogels and such understanding can be extended to other crosslinked polysaccharide networks. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1767–1775  相似文献   

20.
Segmented thermoplastic polyurethanes (TPU)s with amorphous soft segments from the reaction of hexamethylene diisocyanate and 1,2‐butanediol and crystalline hard segments from 4,4′‐methylenediphenyl diisocyanate and 1,6‐hexanediol showed sharp glass‐transition temperatures that could be used as shape‐recovery temperatures. The thermal, mechanical, and shape‐memory effect of these TPUs of various block compositions and lengths were studied by differential scanning calorimetry, dynamic mechanical testing, and tensile testing. As the block lengths decreased, phase mixing increased and hysteresis in the shape‐memory behavior decreased. Too low a content of hard segments increased the hysteresis in the shape‐memory behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2652–2657, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号