首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

2.
Diketopyrrolopyrrole (DPP)‐based terpolymers—P(DPP‐TPyT) and P(DPP‐T3MTT)—bearing bithiophene donating groups and weak accepting units such as pyridine (Py) or methyl thiophene‐3‐carboxylate (3MT), in the polymer backbone, were successfully synthesized. Although the two polymers had similar physical and electrochemical properties, grazing incidence X‐ray diffraction patterns of P(DPP‐TPyT) and P(DPP‐T3MTT) showed mixed and edge‐on orientations, respectively, in thermally annealed films. Accordingly, the P(DPP‐T3MTT) showed twice the hole mobility of P(DPP‐TPyT) in a thin‐film transistor, and a blended film of P(DPP‐T3MTT) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) showed better power conversion efficiency in a polymer solar cell. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1339‐1347  相似文献   

3.
A novel fused ladder alternating D–A copolymer, PIDT–DPP, with alkyl substituted indacenodithiophene (IDT) as donor unit and diketopyrrolopyrrole (DPP) as acceptor unit, was designed and synthesized by Pd‐catalyzed Stille‐coupling method. The copolymer showed good solubility and film‐forming ability combining with good thermal stability. PIDT–DPP exhibited a broad absorption band from 350 to 900 nm with an absorption peak centered at 735 nm. The optical band gap determined from the onset of absorption of the polymer film was 1.37 eV. The highest occupied molecular orbital level of the polymer is as deep as ?5.32 eV. The solution‐processed organic field‐effect transistor (OFETs) was fabricated with bottom gate/top contact geometry. The highest FET hole mobility of PIDT–DPP reached 0.065 cm2 V?1 s?1 with an on/off ratio of 4.6 × 105. This mobility is one of the highest values for narrow band gap conjugated polymers. The power conversion efficiency of the polymer solar cell based on the polymer as donor was 1.76% with a high open circuit voltage of 0.88 V. To the best of our knowledge, this is the first report on the photovoltaic properties of alkyl substituted IDT‐based polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
A new set of push‐pull type 2D‐conjugated polymers (P1–P4) were designed and synthesized where A1, A2 (oxygen analogues) and A3, A4 (sulfur analogues) are electron deficient units used as co‐monomers. On introduction of new repeating units into the polymer backbone, significant changes were observed in optoelectronic properties. Furthermore, the heteroatom exchange in new repeating units has also brought notable changes in photophysical properties, in particular P1 and P2 (oxygen analogues) showed bathochromic shift in UV‐vis absorption spectra and deeper HOMO energy levels than P3, P4 (sulfur analogues). Interestingly P1, P3 absorption spectra shows a vibronic shoulder (659, 652 nm) peak in lower energy region, and this might originated from non‐covalent interactions between the electron rich and electron deficient units. In addition, the systematic investigation of these polymers with additive and solvent treatment, yielded in enhanced power conversion efficiency of 4.29% for P3‐based devices in bulk heterojunction organic solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2668–2679  相似文献   

5.
The solar cell performance and microstructure of DPP‐based polymers with different degrees of fluorination are reported. DPP‐based polymers with thiophene–phenyl–thiophene comonomer and thiophene flanking units are studied, with the degree of fluorination of the phenyl unit varied. With bifluorination of the phenyl ring, a higher open circuit voltage is achieved whilst maintaining or even improving the overall solar cell efficiency. While tetrafluorination leads to a further 0.1 V increase in VOC, reaching a high photo voltage of 0.81 V, overall solar cell performance significantly drops. Microstructural studies using AFM, TEM, Grazing incidence wide‐angle X‐ray scattering (GIWAXS), and Resonant soft X‐ray scattering (R‐SoXS) reveal that bifluorination largely preserves the microstructure of the nonfluorinated system, whereas tetrafluorination results in coarse phase separation between the polymer donor and the fullerene acceptor. Our results demonstrate that the use of an extended comonomer is a promising strategy for optimizing the beneficial effects of fluorination for DPP‐based polymer solar cells, especially in improving the open circuit voltage. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 49–59  相似文献   

6.
Thienoisoindigo (TIIG) has emerged as an attractive building block for high‐performance organic optoelectronic devices. Here we report the first synthesis of a series of π‐conjugated TIIG‐based small molecules and alternating copolymers via direct C–H arylation, which enables the efficient synthesis without use of flammable and toxic orgametallic reagents in fewer steps compared Suzuki and Stille coupling. The direct arylation coupling between TIIG and two respective mono‐bromo aryl reactants clearly shows that the α‐H is more reactive than the β‐H in the thiophene unit of TIIG. The high regioselectivity of TIIG monomer warrants the successful synthesis of high‐quality alternating copolymers with minimal structural defects. PTIIG‐BT polymer synthesized via direct arylation polymerization (DAP) showed comparable molecular weight and hole mobility than the same polymer previously synthesized via Suzuki coupling. Moreover, the two new polymers (PTIIG‐TF and PTIIG‐2FBT) synthesized via DAP showed hole mobility up to 10?3 cm2 V?1 s?1 in FET devices fabricated and tested under ambient conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2015–2031  相似文献   

7.
Poly(p‐divinylene phenylene) derivatives bearing fluorene and carbazole units in the main chain and 5‐phenyl‐1,3,4‐oxadiazole moieties as side groups were prepared by the polycondensation of a newly synthesized monomer, [2‐(5′‐phenyl‐1′,3′,4′‐oxadiazole‐2′‐yl)‐1,4‐xylylene]bis(triphenyl phosphonium bromide) (OXAD), with 9,9‐dibutylfluorene‐2,2′‐dicarbaldehyde (DBFDA) and 9‐(2‐ethylhexyl)carbazole‐3,6‐dicarbaldehyde (EHCDA), which gave DBFDA–OXAD and EHCDA–OXAD. Analogues of these polymers without the side groups were also synthesized by the reaction of 1,4‐xylene bis(triphenyl phosphonium bromide) (PXYL) with the dicarbaldehydes, which gave DBFDA–PXYL and EHCDA–PXYL. All the synthesized polymers are soluble in organic solvents, giving films of good quality. The polymers are stable beyond 375 °C. They emit blue and blue‐green light, and their quantum yields are 38–79% in solution and 1–24% in film, depending on the fluorene and carbazole units as well as the side groups. In particular, the OXAD‐based polymers contain hole‐facilitating backbones and electron‐facilitating side groups, perhaps allowing these polymers to transport both holes and electrons. Overall, the synthesized polymers are potential candidates for the fabrication of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1173–1183, 2002  相似文献   

8.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

9.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

10.
We successfully synthesized new D‐A copolymers that employ 1,10‐bithienopyrrolodione (biTPD), thiophene, and selenophene‐based donor monomeric units. Two polymers, PBTPDEBT and PBTPDEBS , exhibited high degrees of crystallinity and unique polymer chain arrangements on the substrate, which is attributed to their enhanced coplanarity and intermolecular interactions between the polymer chains. Among the thin‐film transistor devices made of PBTPDEBT and PBTPDEBS , the annealed PBTPDEBS device displayed relatively high hole mobility, which was twice that of the PBTPDEBT ‐based device. In addition, an organic photovoltaic device based on a PBTPDEBS :PC71BM blend displayed the maximum power conversion efficiency of 3.85%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1228–1235  相似文献   

11.
In this study, we report the synthesis of π‐conjugated network polymers including unique fluorescent units via palladium‐catalyzed direct (C? H) arylation polycondensation of 1,2,4,5‐tetrafluorobenzene with tetrabromoarenes. The obtained polymers, including tetraphenylethene (TPE) or pyrene (PYR) units, had microporous structures with the specific Brunauer–Emmett–Teller (BET) surface areas at 508 and 824 m2 g?1, respectively. These polymers possessed narrow pore distributions (<15 nm). These analyses supported that π‐conjugated microporous polymers (CMPs) were synthesized by the direct arylation. Similar to the result of BET surface areas, carbon capture capacity of CMP based on PYR unit was higher than that of CMP based on TPE unit. Because the nitrogen capture capacity of these CMPs was low (≈ 0), selectivity of carbon dioxide adsorption was very high. TPE is a typical aggregation‐induced emission unit but PYR is an aggregation‐caused quenching (ACQ) molecule. The incorporation of TPE unit into the microporous polymer gave green‐colored fluorescence (Φ = 0.12). The polymer including PYR units also showed the green‐colored fluorescence (Φ = 0.05) even though the ACQ property. These synthesized CMPs exhibited characteristic solvatofluorochromism. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3862–3867  相似文献   

12.
Perylene bisimide (PBI)‐based acceptor polymers have been synthesized by the facile and environmental‐friendly palladium‐catalyzed direct arylation. The direct arylation using a bromothiophene‐extended PBI monomer, which was designed for the direct arylaion, proceeded to yield PBI‐based acceptor polymers (PPBI3T). As a result of screening the direct arylation conditions, PPBI3T with the number average molecular weight of 14,000 was successfully synthesized, and the spectroscopic and optoelectronic analysis demonstrated the synthesis of PPBI3T with the desired structure. The random compolymerization among naphthalene bisimide (NBI)‐based monomer, PBI‐based monomer, and 3,4‐dimethylthiophene afforded the random copolymers composed of NBI‐ and PBI‐based components (P(NBI3T‐PBI3T)). The composition of each component was controlled by changing the monomer feed ratio, and furthermore, the optical and electrochemical properties of P(NBI3T‐PBI3T) were also tunable by controlling the composition of each component. To the best of our knowledge, these results were the first accomplishment for the direct arylation synthesis of PBI‐based acceptor polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3151–3158  相似文献   

13.
We have demonstrated a direct arylation polycondensation of 3,4‐ethylenedioxythiophene with 2,7‐dibromo‐9,9‐dioctylfluorene using palladium on carbon (Pd/C) as a catalyst. Pd/C is a low‐cost solid‐supported palladium catalyst, giving one of the effective catalytic systems for direct arylation. The Pd/C‐catalyzed direct arylation polycondensation with acetic acid/potassium carbonate in N,N‐dimethylacetamide furnished a high molecular weight π‐conjugated alternating copolymer of EDOT‐fluorene (Mn = 89,300, Mw/Mn = 3.27) in high yield. The polycondensation of EDOT with various dibromoarenes was also achieved, giving EDOT‐carbazole, EDOT‐dialylamine, and EDOT‐bithiophene polymers. Optical and electrochemical properties of the polymers were also discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1183–1188  相似文献   

14.
A new series of conjugated polymers containing dibenzo[def, mno]chrysene units were successfully designed and synthesized to investigate their physical properties and device performances in field‐effect transistors and photovoltaic cells. Two polymers, namely poly(4,10‐bithiophene‐6,12‐bis(2‐decyltetradecyloxy)‐dibezo[def, mno]chrysene) ( PTTC) and poly(2,2′‐thiophenevinylenthiophene‐4,10‐[6,12‐bis(2‐decyltetradecyloxy)‐dibenzo[def, mno]chrysene]) ( PTVTC) , exhibited similar light absorption, electrochemical characteristics, and theoretical electronic structures. However, they behaved very differently when used in thin‐film transistors and solar cells. The PTTC polymer with two thiophene groups had better charge transport behavior, whereas the PTVTC polymer with two thiophene units connected by a vinyl group exhibited higher efficiency in bulk heterojunction photovoltaic cells. These results were discussed in terms of their nanostructural bulk morphologies established from transmission electron microscopy and two‐dimensional grazing incidence wide angle X‐ray scattering analyses. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2559–2570  相似文献   

15.
Thieno[3,2‐b]thiophene‐substituted benzo[1,2‐b:4,5‐b′]dithiophene donor units (TTBDT) serve as novel promising building blocks for donor–acceptor (D‐A) copolymers in organic photovoltaic cells. In this study, a new D‐A type copolymer (PTTBDT‐TPD) consisting of TTBDT and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) is synthesized by Stille coupling polymerization. A PTTBDT‐TPD analog consisting of TTBDT and alkylthienyl‐substituted BDT (PTBDT‐TPD) is also synthesized to compare the optical, electrochemical, morphological, and photovoltaic properties of the polymers. Bulk heterojunction photovoltaic devices are fabricated using the polymers as p‐type donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as the n‐type acceptor. The power conversion efficiencies of the devices fabricated using PTTBDT‐TPD and PTBDT‐TPD are 6.03 and 5.44%, respectively. The difference in efficiency is attributed to the broad UV–visible absorption and high crystallinity of PTTBDT‐TPD. The replacement of the alkylthienyl moiety with thieno[3,2‐b]thiophene on BDT can yield broad UV–visible absorption due to extended π‐conjugation, and enhanced molecular ordering and orientation for organic photovoltaic cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3608–3616  相似文献   

16.
The present highlight discusses major work in the synthesis of low bandgap diketopyrrolopyrrole ( DPP )‐based polymers with donor–acceptor–donor ( D–A–D ) approach and their application in organic electronics. It examines the past and recent significant advances which have led to development of low bandgap DPP ‐based materials with phenyl and thiophene as donors. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4241–4260  相似文献   

17.
We describe the successful synthesis of four novel donor‐acceptor (D‐A) type copolymers, referred to as PQxBT , PQxFBT , TQxBT , and TQxFBT . The effects of using a fluorinated bithiophene (FBT) and varying the side‐chain moieties tethered to the quinoxaline (Qx) unit (electron‐withdrawing group in the polymer backbone) on the physical properties and photovoltaic performance were investigated. Specifically, the four polymers were synthesized using either alkoxyphenyl (P) or alkylthiophene (T) units anchored to the quinoxaline in the polymer backbone. The FBT‐bearing polymers, PQxFBT and TQxFBT , displayed more redshifted absorption spectra and higher crystallinity owing to the greater planarity of their polymer backbone as compared to the non‐fluorinated polymers. The TQxFBT copolymer, equipped with both the alkylthiophene side chains and FBT, exhibited face‐on orientation in film state and a well‐mixed nanophase morphology in TQxFBT :PC71BM blend films. The photovoltaic device fabricated from TQxFBT :PC71BM exhibited the highest power conversion efficiency of 4.18%. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1209–1218  相似文献   

18.
Two novel polymeric semiconductor materials based on naphtho[2,1‐b:3,4‐b']dithiophene (NDT), PNDT‐TTT and PNDT‐TET , were designed and synthesized. These synthesized polymers were tested in bulk heterojunction solar cells as blends with the acceptor [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). PNDT‐TTT contained tri‐thiophene units, and PNDT‐TET contained bi‐thiophene units coupled by ethylenic linkages. Comparison to the properties of PNDT‐T , which contained single thiophene units, these polymers exhibit red‐shifted absorption spectra as a result of the enhanced conjugation lengths. These effects resulted in high short circuit currents (JSC) in the organic solar cells. The PNDT‐TET ‐ and PNDT‐TTT ‐based devices exhibited considerably better photovoltaic performances, with power conversion efficiencies of 3.5 and 3.3%, respectively, compared to the PNDT‐T ‐based device (1.3%). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4742–4751  相似文献   

19.
We report the synthesis and characterization of a unique class of conjugated polymers, polytriacetyelenes (PTAs), from a set of trans‐enediyne (EDY) monomers bearing alkyl and aromatic substituents. Two different methods, i.e., Glaser‐Hay coupling and Pd‐catalyzed oxidative coupling, were employed depending on the nature of the side‐chains. Our methodology is highly versatile in that it allows direct attachment of aromatic substituents to the PTA main‐chains, allowing enhanced tunability in polymer electronic properties, which has not been achievable through previously reported methods. The newly synthesized PTAs displayed strong ability of quenching the fluorescence of poly(3‐hexylthiophene) (P3HT), a prototypical conjugated polymer in organic solar cells, indicating possible applications of these PTAs in optoelectronic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1391‐1395  相似文献   

20.
A series of perylene and naphthalene diimide‐containing random copolyurethanes with different ratios of perylene/naphthalene diimide content was synthesized and characterized. Copolymerization improved the solubility of these rigid aromatic diimides, and the copolymers were soluble in common organic solvents like chloroform, tetrahydrofuran, and so forth. The absorption spectra of perylene‐based copolymers showed a red‐shifted peak at a wavelength of 557 nm corresponding to J‐type aggregates. For naphthalene copolymers, the quenching of fluorescence at higher naphthalene incorporation suggested the presence of aggregates because of the extensive π‐π stacking of the aromatic core. FTIR spectroscopic analysis showed that the hydrogen bonding tendency of the polymer decreased with increase in perylene/naphthalene incorporation. The fluorescence spectra of the perylene polymers were exactly a mirror image of the absorption spectra. The fluorescence spectra of the naphthalene polymers at higher naphthalene incorporation showed a red‐shifted excimer like emission peak, which was assigned as static excimers based on their excitation spectra. These polymers could exhibit two types of secondary interaction modes, namely, hydrogen bonding (via urethane linkage) and π‐stacking (via aromatic perylene or naphthalene units) thus highlighting the importance of polymer design in inducing self‐organization at both low and high incorporation of the rigid bisimide moieties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1224–1235, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号