首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

2.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

3.
It is known that poly(3‐alkylthiophene) (P3AT) side‐chain length notably influences the photovoltaic performances of relating devices. However, comprehensively study on its impact on the structures of P3ATs and their blends with [6, 6]‐phenyl‐C61 butyric acid methyl ester (PCBM) is insufficient. By using solid‐state NMR and FTIR techniques, four P3ATs and their PCBM blends are investigated in this work, focusing on the phase structures as modulated by side‐chain length. Recently, we revealed multiple crystalline main‐chain packings of packing a and b together with a mesophase in poly(3‐butylthiophene) (P3BT) films (DOI: 10.1021/acs.macromol.6b01828). Here, the semicrystalline structures are investigated on poly(3‐hexylthiophene) (P3HT), poly(3‐octylthiophene) (P3OT), and poly(3‐dodecylthiophene) (P3DDT) with traditional form I modification, where packing a and the amorphous phase are probed. Furthermore, crystallized side chain within packing a is detected in both P3OT and P3DDT films, which shows a FTIR absorption at 806 cm−1. Structural studies are also conducted on P3AT:PCBM blends. Compared with the pure P3ATs, the polymer crystallinities of the blends show reduction of about 40% for P3OT and P3DDT, whereas only about 10% for P3HT. Moreover, in P3BT:PCBM and P3HT:PCBM, the crystalline polymers and PCBM are phase separated, while in P3OT:PCBM and P3DDT:PCBM, blend components are mostly miscible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 751–761  相似文献   

4.
Poly(3‐hexylselenophene)s (P3Hs) with high regioregularity (RR = 92–96%), that is, regioregular poly(3‐hexylselenophene)s (rr‐P3HSs), have been synthesized under the phosphine‐free direct arylation conditions in the presence of PdCl2 as a precatalyst. rr‐P3HS with the high molecular weight (Mn ~ 10,000) was obtained as a result of screening of direct arylation conditions. Subsequently, the influences of primary structure, molecular weight (Mn = 3900–10,000) and regioregularity (RR = 57–96%), on optical properties and self‐assembled nanostructure of P3HS were investigated. X‐ray diffraction demonstrated that molecular weight, regioregularity, and preparation method of films dominate the crystallization behavior of P3HS. Among these parameters, it was evident that a high degree of regioregularity was the most fundamental contributor to achieve pure crystalline nanostructure. Furthermore, nanoassembly based on pure crystalline nanostructure, such as non‐woven fibrous and bundle‐like spherulitic self‐assembled nanostructures, was successfully prepared in rr‐P3HS, respectively, by appropriate modulation of the aforementioned parameters. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2749–2755  相似文献   

5.
Direct arylation polymerization (DArP) is an emerging alternative to Stille and Suzuki polymerizations. This method is attractive as it allows preparation of high‐molecular‐weight conjugated polymers in good yield without the need to metallate monomers. Despite this promise, for poly(3‐hexylthiophene) (P3HT) and related polymers that have β‐protons on the thiophene ring, DArP is known to produce β‐defects, which make the polymer properties different from polymers produced by traditional methods. Here, we demonstrate that DArP conditions based on simple, inexpensive, and bench‐stable reagents can be tuned to limit the amount of defects and produce P3HT with properties remarkably similar to Stille P3HT. Specifically, lowering the reaction temperature, lowering the amount of catalyst, and using a bulkier carboxylate ligand is critical. Optimized conditions include reacting 2‐bromo‐3‐hexylthiophene with 0.25 mol % of Pd(OAc)2, 1.5 equivalents of K2CO3, and 0.3 equivalents of neodecanoic acid in N,N‐dimethylacetamide at 70 °C and give DArP P3HT with ~60% yield, regioregularity of 93.5%, molecular weight of 20 kDa, polydispersity of 2.8, and melting point of 217 °C, providing a very close match to Stille P3HT, which is obtained with 70–80% yield, 91–94% regioregularity, molecular weight of 15–25 kDa, polydispersity of 2.5–2.8, and melting point of 214–221 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2660–2668  相似文献   

6.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

7.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

9.
Poly(3‐octadecylthiophene)s (P3OTs) were prepared via Grignard metathesis polymerization of 2,5‐dibromo‐3‐octadecylthiophene in the presence of palladium and nickel catalysts. The effect of catalyst structure and reaction temperature on the regioregularity of P3OTs was investigated. Nickel catalysts provided P3OTs with higher regioregularity, while palladium catalysts gave lower regioregularity. Surprisingly, the regioregularity of P3OTs increased when the polymerization was conducted at higher temperature. The catalyst and temperature dependence of the regioregularity is consistent with two competing mechanisms. Polymerizations at higher temperature with nickel catalysts occur primarily via chain‐growth reactions, while polymerizations at lower temperature with palladium catalysts have competing step‐growth and chain growth reactions. P3OTs with higher regioregularity have longer wavelength visible absorptions, while P3OTs with lower regioregularity have shorter wavelength absorptions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5538–5547, 2004  相似文献   

10.
Poly(2‐alkyl‐2‐oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (Tg) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt‐recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 °C and PiPropOx between 90 and 150 °C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > Tg with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 721–729  相似文献   

11.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

12.
A series of well‐defined poly(3‐hexylthiophene)s (P3HT) of different molecular weight (MW) and high regioregularity was investigated for charge transport properties in as‐cast and melt‐crystallized films. The semicrystalline structure of the P3HT was characterized by X‐ray scattering and Atomic force microscopy. Crystallization by cooling from the melt led to a substantial increase in crystallinity and a stronger alignment of the crystals in comparison to as‐cast films. The increase in crystallinity went along with an increase in hole mobility of up to an order of magnitude as measured by the space charge limited current method. Additionally, the hole mobility depended on the long period of P3HT lamellae and consequently on the MW. In compliance with the long period, the charge carrier mobility first increased with the MW before decreasing again at the onset of chain folding. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 943–951  相似文献   

13.
A new polymeric dyad of oligo‐anthracene‐block‐poly(3‐hexylthiophene) (Oligo‐ANT‐b‐P3HT) has been synthesized as a donor–donor dyad building block for organic photovoltaics. The polymer dyad and oligomer of anthracene‐9,10‐diyl (Oligo‐ANT) are prepared by Grignard Metathesis. The higher order of crystallinity and molecular chains ordering at solid phase reveal the intrinsic optical and electrical properties of polymeric dyad resulting in relatively higher light harvesting ability compared to the oligo(anthracene‐9,10‐diyl). The UV‐visible spectrum of (Oligo‐ANT‐b‐P3HT) in solution shows broad absorption with two sets of absorption from both anthracene and thiophene core units, covering a wide range of the visible spectrum. The test devices of the blends of polymeric dyad with fullerene C61 (PCBM) show improved photovoltaic performance with a power conversion efficiency of 3.26% upon subjecting to pre‐fabrication thermal treatments. With optimized morphology of the interpenetrating network and the shorter fluorescence lifetime of the annealed dyad/PCBM blends, the effective charge transfer from the donor dyad to PCBM has evidenced. Thus, these studies will allow further synthetic advances to make potential high crystalline polymeric dyads with significantly improved light harvesting capability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3032–3045  相似文献   

14.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

15.
Polymers that possess lower critical solution temperature behavior such as poly(2‐alkyl‐2‐oxazoline)s (PAOx) are interesting for their application as stimulus‐responsive materials, for example in the biomedical field. In this work, we discuss the scalable and controlled synthesis of a library of pH‐ and temperature‐sensitive 2‐n‐propyl‐2‐oxazoline P(nPropOx) based copolymers containing amine and carboxylic acid functionalized side chains by cationic ring opening polymerization and postpolymerization functionalization strategies. Using turbidimetry, we found that the cloud point temperature (CP) is strongly dependent on both the polymer concentration and the polymer charge (as a function of pH). Furthermore, we observed that the CP decreased with increasing salt concentration, whereas the CP increased linearly with increasing amount of carboxylic acid groups. Finally, turbidimetry studies in PBS‐buffer indicate that CPs of these polymers are close to body temperature at biologically relevant polymer concentrations, which demonstrates the potential of P(nPropOx) as stimulus‐responsive polymeric systems in, for example, drug delivery applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1573–1582  相似文献   

16.
A series of 1,1′‐ferrocene‐containing polyelectrolytes ( 3, 4 ) were prepared when 1,1′‐bis(N,N‐dimethylaminomethyl)ferrocene ( 1a ) or 1, 1′‐bis{[1‐(2‐methyl)imidazol‐1‐yl]methyl}ferrocene ( 1b ) was quaternized with 1,4‐dibromobutane or α, α′‐dibromo‐p‐xylene. The counterion was bromide or bis(trifluoromethanesulfonyl)‐amide formed after metathesis with the lithium salt. Their chemical structures were determined by IR and NMR spectra. Molecular weights in the range of ~5400 ( 4a )– ~14,700 ( 4c ) for number‐average molecular weights (Mn) over narrow molecular weight distributions were determined for polymers 4 by gel permeation chromatography. Thermal properties of these materials were obtained by differential scanning calorimetry and thermogravimetric analysis that showed the polymers had thermal stabilities ranging between 172 and 330 °C. Liquid‐crystalline behavior was investigated on a hot stage polarizing optical microscope. Polymers 3a , 4b , and 4d formed either a high‐order or a low‐order smectic phase above their melting or fusion temperatures, and exhibited smectic‐to‐isotropic transitions. The ranges of the liquid‐crystalline phases for these materials were 22, 46, and >55 °C. Compounds 3b , 4a , and 4c are crystalline before melting or decomposing. All of the polymers exhibited absorption bands at ~430 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 974–983, 2005  相似文献   

17.
Influence of side chain regioregularity on photovoltaic performance has been investigated in bulk heterojunction solar cells based on a series of poly(3‐dodecylthienylenevinylene)s (C12‐PTV) and 6,6‐phenyl‐C61‐butyric acid methyl ester (PCBM). Performance of each C12‐PTV is optimized for fair comparison. It is found that regiorandomness has no detrimental effect on device performance, in sharp contrast to poly(3‐hexylthiophene) (P3HT). Fully regioregular C12‐PTV performs slightly poorer than less regioregular ones mainly due to its fast crystallization behavior. The results suggest that introduction of side chain regiorandomness is an effective strategy to enhance processability of certain types of polymers without a reduction in photovoltaic performance. The better polymer:PCBM weight ratio, found to be 3:7 for all C12‐PTVs, and improved device performance, as compared with the literature work on the same polymer synthesized by a different method, demonstrate again the importance of the integrity of polymer main chain structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

18.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

19.
We report the synthesis, characterization, microphase separation, field‐effect charge transport, and photovoltaic properties of regioregular poly(3‐hexylthiophene)‐b‐poly(3‐cyclohexylthiophene) (P3HT‐b‐P3cHT). Two compositions of P3HT‐b‐P3cHT (HcH63 and HcH77) were synthesized with weight‐average molecular weights of 155,500 and 210,800 and polydispersity indices of 1.45 and 1.57, respectively. Solvent‐casted HcH77 was found to self‐assemble into nanowires with a width of 12.5 ± 0.9 nm and aspect ratios of 50–120, as observed by TEM imaging. HcH77 and HcH63 annealed 280 °C were observed by small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) to be microphase‐separated with characteristic length scales of 17.0–21.7 nm. The microphase‐separated domains were shown to be crystalline with interlayer backbone (100) d‐spacings of 1.69 and 1.40 nm, which correspond to the P3HT and P3cHT blocks, respectively. Field‐effect transistors fabricated from P3HT‐b‐P3cHT thin films showed a mobility of holes (0.0019 cm2/Vs) which is independent of thermal annealing. Bulk heterojunction solar cells based on HcH77/fullerene (PC71BM) blend thin films had a maximum power conversion efficiency of 2.45% under 100 mW/cm2 AM1.5 solar illumination in air. These results demonstrate that all‐conjugated block copolymers are suitable semiconductors for applications in field‐effect transistors and bulk heterojunction solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 614–626, 2010  相似文献   

20.
We report the synthesis and characterization of a series of novel mesogen‐jacketed liquid‐crystalline polymers, poly[2,5‐bis(4′‐alkoxycarbonylphenyl)styrene]s ( 1‐m , where m is the number of carbon atoms in the alkyl tails), along with the corresponding monomers, 2,5‐bis(4′‐alkoxycarbonylphenyl)styrenes ( 2‐m ), and their precursors, 2,5‐bis(4′‐alkoxycarbonylphenyl)toluenes ( 3‐m ). The influence of the tail length on the thermotropic properties of the two types of low‐molecular‐mass compounds and macromolecules was investigated with a combination of differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction techniques. Except for compound 3‐3 , which exhibited a monotropic nematic phase, all members of the low‐molar‐mass molecules developed no mesophase during both heating and cooling processes. The glass‐transition temperatures of the polymers decreased as the tail lengths increased. The 5% weight loss temperatures of all the polymers under a nitrogen atmosphere were above 360 °C, indicating quite high thermal stability. Although polymers 1‐1 and 1‐2 were non‐liquid‐crystalline, columnar nematic phases were observed for the remaining homopolymers with longer alkyl tails. The mesophases of 1‐3 to 1‐9 that developed at high temperatures remained upon cooling to room temperature, whereas those of 1‐10 to 1‐12 disappeared during the cooling process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 830–847, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号