首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure of polybutadiene synthesized via cationic polymerization using TiCl4‐based initiating systems has been investigated using 1D (1Н, 2Н, and 13С) and 2D (HSQC and HMBC) NMR spectroscopy. It was found that trans‐1,4‐unit is predominant structure of unsaturated part of polymer chain. Besides, the small amount of 1,2‐structures was also detected, while cis‐1,4‐units were totally absent. The signals of carbon atoms of three types of head groups (trans‐1,4‐, 1,2‐, and tert‐butyl) and two types of end groups (trans‐1,4‐Cl and 1,2‐Cl) were identified for the first time in macromolecules of cationic polybutadiene. It was showed that tert‐butyl head groups were formed due to the presence in monomer of admixtures of isobutylene. The new methodology for calculation of the content of different structural units in polybutadiene chain as well as the head and end groups was proposed. It was established that main part of 1,2‐units distributed randomly along the polybutadiene chain as separate units between trans‐1,4‐structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 387–398  相似文献   

2.
The microstructure of poly(1,3‐pentadiene) synthesized by cationic polymerization of 1,3‐pentadiene with tBuCl/TiCl4 initiating system is analyzed using one‐dimensional‐ and two‐dimensional‐NMR spectroscopy. It is shown that unsaturated part of chain contains only homo and mixed dyads with trans?1,4‐, trans?1,2‐, and cis?1,2‐structures with regular and inverse (head‐to‐head or tail‐to‐tail) enchainment, whereas cis?1,4‐ and 3,4‐units are totally absent. The new quantitative method for the calculation of content of different structural units in poly(1,3‐pentadiene)s based on the comparison of methyl region of 13C NMR spectra of original and hydrogenated polymer is proposed. The signals of tert‐butyl head and chloromethyl end groups are identified in a structure of poly(1,3‐pentadiene) chain and the new approaches for the quantitative calculation of number‐average functionality at the α‐ and ω‐end are proposed. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3297–3307  相似文献   

3.
Soluble poly(para‐phenylene) having a long polymer chain (more than six repeat units) was synthesized with a tert‐butyl end‐group (t‐PPP) and was found to have improved solubility and excellent optical properties. Poly(1,3‐cyclohexadiene) (PCHD) consisting of only 1,4‐cyclohexadiene (1,4‐CHD) units was synthesized with a tert‐butyl end‐group (t‐PCHD), and completely dehydrogenated to obtain t‐PPP. This end‐group effectively prevented the crystallization of t‐PPP, and polymers containing up to 16 repeat units were soluble in tetrahydrofuran. Soluble t‐PPP obtained had an ability to form a tough thin film prepared by spin‐coating method. Optical analyses of t‐PPP provided strong evidence for a linear polymer chain structure. A block copolymer of t‐PPP and a soluble polyphenylene (PPH) was then synthesized, and the excellent optical properties were retained by this block copolymer along with its solubility. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5223–5231, 2008  相似文献   

4.
A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use of tert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 801–807  相似文献   

5.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

6.
In this article, we investigate a new bio‐inspired synthetic route towards NR homologs based on the carbocationic polymerization of isoprene initiated by dimethyl allyl alcohol (DMAOH)/TiCl4 or BF3.Et2O as the catalytic system. This study is the continuation of our studies related to the proof of principle that NR biosynthesis is based on a carbocationic mechanism. It is shown that using the biomimetic strategy of initiation by allylic carbocations, polyisoprene carrying a dimethyl allyl head group is produced almost exclusively via 1,4 addition, yielding repeating units with cis and trans configurations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2181–2189, 2009  相似文献   

7.
A new functionalised alkynylsilane, Cl‐Si(C?C‐CMe3)3 ( 3 ), was obtained by a facile multistep synthesis. Treatment of 3 with equimolar quantities of the hydrides H‐M(CMe3)2 (M=Al, Ga) gave the mixed alkenyl‐di(alkynyl)silanes, in which the chlorine atom adopts a bridging position between the aluminium and silicon atoms. Dual hydrogallation of 3 resulted in the formation of a di(alkenyl)‐alkynylsilane containing two gallium atoms, one of which is coordinated to the chlorine atom, and the second is bonded to the α‐carbon atom of the remaining alkynyl group. A tert‐butylsilane was unexpectedly formed by a unique 1,3‐dyotropic chlorine–tert‐butyl exchange for the corresponding dialuminium compound. One aluminium atom is bonded to a tert‐butyl group, a terminal chlorine atom and the α‐carbon atom of the ethynyl moiety; the second is coordinatively unsaturated, with two terminal tert‐butyl substituents. High‐level quantum‐chemical calculations favour a stepwise dyotropic rearrangement with an intermediate cationic silicon species over a simultaneous tert‐butyl–chlorine migration via a five‐coordinate silicon atom in the transition state.  相似文献   

8.
C2‐symmetric group 4 metallocenes based catalysts (rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 (1) , rac‐[CH2(1‐indenyl)2]ZrCl2 (2) and rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]TiCl2 (3) ) are able to copolymerize styrene and 1,3‐butadiene, to give products with high molecular weight. In agreement with symmetry properties of metallocene precatalysts, styrene homosequences are in isotactic arrangements. Full determination of microstructure of copolymers was obtained by 13C NMR and FTIR analysis and it reveals that insertion of butadiene on styrene chain‐end happens prevailingly with 1,4‐trans configuration. In the butadiene homosequences, using zirconocene‐based catalysts, the 1,4‐trans arrangement is favored over 1,4‐cis, but the latter is prevailing in the presence of titanocene (3) . Diad composition analysis of the copolymers makes possible to estimate the reactivity ratios of copolymerization: zirconocenes (1) and (2) produced copolymers having r1 × r2 = 0.5 and 3.0, respectively (where 1 refers to styrene and 2 to butadiene); while titanocene (3) gave tendencially blocky styrene–butadiene copolymers (r1 × r2 = 8.5). The copolymers do not exhibit crystallinity, even when they contain a high molar fraction of styrene. Probably, comonomer homosequences are too short to crystallize (ns = 16, in the copolymer at highest styrene molar fraction). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1476–1487, 2008  相似文献   

9.
The synthesis of macromonomers of acrylic acid was performed by telomerization in a three‐step process. The first step was the telomerization of tert‐butyl acrylate in the presence of thioglycolic acid. Different molecular weights were obtained with different ratios of the monomer to the transfer agent. Good control of the molecular weights and architectures of the oligomers (e.g., the presence of an acid function on the chain end) was observed. The transfer constant of tert‐butyl acrylate with thioglycolic acid was assessed (chain‐transfer constant = 0.6). In the second step, the terminal unsaturation of the oligomers was obtained by the reaction of the terminal acid groups with 2‐isocyanatoethyl methacrylate to yield the macromonomers of tert‐butyl acrylate. In the last step, the tert‐butyl acrylate groups were hydrolyzed in the presence of trifluoroacetic acid at room temperature. The macromonomers were copolymerized with styrene to obtain graft copolymers, and the reactivity ratios were evaluated. Finally, the copolymers were characterized with surface electron microscopy and atom force microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 395–415, 2007  相似文献   

10.
A series of ABC triblock copolymers, that is, polyisoprene‐block‐polystyrene‐block‐poly(ethylene oxide) (PI‐PS‐PEO), PI‐block‐poly(tert‐butyl acrylate)‐block‐PEO (PI‐PtBA‐PEO), and PI‐block‐poly(acrylic acide)‐block‐PEO (PI‐PAA‐PEO) were obtained by combination of anionic technique, atom transfer radical polymerization (ATRP), and single electron transfer nitroxide coupling (SETNRC) reaction. Anionic polymerization of isoprene followed by end capping with ethylene oxide yielded hydroxyl‐terminated PI. After esterification, PI with Br end group was used as a macroinitiator to initiate the polymerization of styrene and tBA by ATRP that was then trapped by 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group in PEO by SETNRC reaction rapidly with high efficiency in tetrahydrofuran at room temperature. The effect of reaction time and polymer chain length on SETNRC reaction was discussed in detail. In the presence of Cu0/tris[2‐(dimethylamino)ethyl]amine, SETNRC between PI‐PS‐Br and PEO‐TEMPO was carried out with the efficiency of up to 91.6% in 2 h. With the increase in polymer chain length, the efficiency decreased fleetly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Until recently, the primary living radical polymerization method available for preparing polyisoprene was nitroxide‐mediated radical polymerization, with reversible addition‐fragmentation chain transfer polymerization being applied only in a few cases within the last couple of years. We report here the preparation of polyisoprene by RAFT in the presence of the trithiocarbonate transfer agent S‐1‐dodecyl‐S′‐(r,r′‐dimethyl‐r′′‐acetic acid)trithiocarbonate and t‐butyl peroxide as the radical initiator. The kinetics of this polymerization at an optimized temperature of 125 °C and radical initiator concentration of 0.2 equiv relative to transfer agent have been studied in triplicate and demonstrate the living nature of the polymerization. These conditions resulted in polymers with narrow polydispersity indices, on the order of 1.2, with monomer conversions up to 30%. Retention of chain‐end functionality was demonstrated by polymerizing styrene as a second block from a polyisoprene macrotransfer agent, resulting in a block copolymer presenting a unimodal gel permeation chromatogram, and narrow molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4100–4108, 2007  相似文献   

12.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

13.
Bound rubber in a filled rubber compound is formed by physical adsorption and chemisorption between the rubber and the filler. Styrene–butadiene rubber (SBR) is composed of four components of styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units. Filler–polymer interactions in both silica and carbon black‐filled SBR compounds were studied by analyzing microstructures of the bound rubbers with pyrolysis‐gas chromatography. Differences in the filler–polymer interactions of the styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units were investigated. The filler–polymer interactions of the butadiene units were found to be stronger than that of the styrene unit. The interactions of the cis‐1,4‐ and trans‐1,4‐units were stronger with carbon black than with silica, whereas the 1,2‐unit interacted more strongly with silica than with carbon black. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 439–445, 2001  相似文献   

14.
cis‐Selective polymerizations of isoprene with the catalysts composed of η5‐C5H4(R)TiCl3 (1; R?H, 2 ; tert‐Bu) and methylaluminoxane were investigated. Both catalysts showed remarkable catalytic activities for the polymerization of isoprene. The polymerization activities were strongly affected by the substituent introduced on cyclopentadienyl ring. Introduction of bulky tert‐butyl group was found to be effective for enhancement of polymerization activity, but the cis‐content of polyisoprene prepared by the 2 /MAO catalyst was lower than that by 1 /MAO catalyst. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1841–1844, 2004  相似文献   

15.
Two series of novel random polyfluorene copolymers containing quinoxaline units were prepared by stressing the coupling according to Yamamoto. The first series contains 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)benzo[g]quinoxaline and the second series 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)quinoxaline as energy accepting unit. The copolymers were identified by gel permeation chromatography, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Thermal properties were analyzed by thermal gravimetric analysis and differential scanning calorimetry revealing amorphous copolymers that are stable up to 430 °C. The morphology was investigated using atomic force microscopy. The optical properties in solutions and thin films were analyzed. Furthermore, the thin film electro‐optical properties were determined in monolayer polymer light‐emitting devices. Single layer devices were built with efficiencies ranging from 0.15 to 2.0 cd/A. For the random copolymers with 5 mol % benzo[g]quinoxazoline in the polyfluorene backbone some threefold efficiency enhancement from 1.1 to 3.0 cd/A was achieved by utilizing an ultra thin interlayer of poly(9,9‐di‐n‐octylfluorene‐2,7‐diyl)‐alt‐[1,4‐phenylene‐(4‐sec‐butylphenylimino)‐1,4‐phenylene] between PEDOT:PSS and the emissive random copolymer layer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4773–4785, 2007  相似文献   

16.
A series of poly(1,4‐cyclohexylenedimethylene 1,4‐cyclohexanedicarboxylate) (PCCD) samples, characterized by different cis/trans ratio of the 1,4‐cyclohexanedicarbonyl unit, have been synthesized and analyzed by thermogravimetry (TGA), calorimetry (DSC), and X‐ray diffraction (WAXD). The thermal stability results are good and are not affected by the stereochemistry of the 1,4‐cyclohexylene units. On the other hand, the thermal transitions are notably influenced by the cis/trans content. With the increment of the trans content the polymer changes from completely amorphous to semicrystalline material. Tg, Tm, and crystallinity increase. These results suggest that the trans configuration induces a better chain packing and higher symmetry, improving the crystallizability of the samples. The effect of the molecular structure on the thermal properties is analyzed by using a statistical approach. From the effective correlations found between stereochemistry of the C6 rings and transition temperatures it is possible to extrapolate that the configuration of 1,4‐cyclohexylene ring deriving from 1,4‐cyclohexanedicarboxylic acid or dimethyl 1,4‐cyclohexanedicarboxylate results to be the main element responsible for the thermal properties. This is due to the high rigidity of the 1,4‐cyclohexanedicarbonyl unit with respect to 1,4‐cyclohexanedimethyleneoxy unit, deriving from the diol. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 619–630, 2008  相似文献   

17.
Extinction coefficients of the characteristic infrared bands due to isomeric structural units were measured for polybutadiene and polyisoprene in CS2 or CCl4 solutions and were compared with the isomer composition determined by NMR. The NMR signal assignments were made on the basis of the spectra of deutero derivatives of the polymers. In the case of polyisoprene, linear relations were obtained between the extinction coefficients and the isomer contents determined by NMR for the absorption bands at 1385 cm?1 (characteristic of trans-1,4 units), 1376 cm?1 (cis-1,4 units), and 889 cm?1 (3,4 units). However, for the absorption bands at 840 cm?1 (characteristic of cis-1,4 and trans-1,4 units), isomerized polyisoprenes did not give such a linear relationship. In polybutadiene, the extinction coefficient for the atactic 1,2 units was found to be lower than that of the syndiotactic 1,2 unit. These experimental facts lead to the conclusion that additivity of the extinction coefficients does not always hold for diene polymers. The deviation from the linear relation may be associated with regular sequences of one isomeric conformation in the chain.  相似文献   

18.
Metal-catalyzed selective isoprene polymerization has been a major entry toward cis-1,4, trans-1,4, and 3,4 isomers of polyisoprene, however, 1,2 selective polymerization of isoprene has not yet been achieved due to the steric problem. In this work, difluoro cobalt complexes carrying aminophosphory (-HN-P(=O) tBu2-) fused pyrazol-pyridine ligand has been prepared and characterized. In combination with Mgn-Bu2, the formed catalyst unprecedentedly converts isoprene to polyisoprene with 1,2 enchainment up to 50 mol% in a molecular weight controlled polymerization mode. The resultant polymers are fully characterized by NMR, IR, DSC, and GPC. The 1,2 incorporation of polyisoprene is weakly dependent on feeding of Mgn-Bu2 and reaction temperature. The weak affinity between Mg2+ and allylic terminal of propagating chain is possible for the unique 1,2 irregular insertion and non-irreversible chain transfer and termination reactions throughout the chain propagation. The ability of current catalyst demonstrates a big advantage for application in the development of 1,2 selective polymerization of isoprene, and a potential for access to a new family of polyisoprene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2286–2293  相似文献   

19.
An infrared and NMR study was made of the microstructural changes produced in thin films of purified cis- and trans-1,4-polyisoprene when irradiated with ultraviolet light in vacuo at room temperature. The major photochemical processes observed were cis–trans isomerization and loss of 1,4 double bonds, the latter process being accompanied by the formation of vinylidene and vinyl double bonds as well as some endlinking. Very surprisingly, the loss of original double bonds contributed also to a novel photocyclization which gave rise to cyclopropyl groups in the polyisoprene chain. The isomerization and the formation of cycloprophyl groups are presumed to proceed through triplet and biradical states of the 1,4 double bonds, while the vinylidene and vinyl double bonds must result from chain repture at the carbon–carbon bond joining successive isoprene units. Hydrogen abstraction and double-bond migration are of neglible importance in the overall photochemistry of polyisoprene.  相似文献   

20.
Hydroxy‐functionalized isotactic poly(1‐butene) was synthesized using transition metal‐catalyzed regioselective C? H borylation at the side chain of the commercial polyolefin and subsequent oxidation of the boronic ester functionality. Functionalization up to ~ 19 mol % of the termini of the ethyl side chain occurred without significant side reactions that could alter the polymer chain length. Esterification of the hydroxy group in the polymer with 2‐bromoisobutyl bromide generated a side chain‐functionalized polyolefin macroinitiator. Atom transfer radical polymerization of tert‐butyl acrylate from the macroinitiator produced a high molecular‐weight graft copolymer of the polyolefin, isotactic poly(1‐butene)‐graft‐poly(tert‐butyl acrylate) (PB‐g‐PtBA). Finally, the hydrolysis of the tert‐butoxy ester group of PB‐g‐PtBA created an amphiphilic polyolefin, isotactic poly(1‐butene)‐graft‐poly(acrylic acid), which contained a short carboxylic acid‐functionalized polymer block at the side chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3533–3545, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号