首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray absorption spectroscopic measurements have been used to compare the electronic structures of swift heavy ions (100 MeV Si ions) irradiated and pristine Ni-Al nanocrystalline films. Results from X-ray diffraction (XRD), X-ray absorption near-edge structure (XANES) spectra at Al K-, and Ni L(2,3)-edges and extended X-ray absorption fine structure (EXAFS) at Ni K-edges are discussed. The observed XRD peaks indicate the improvement of crystalline nature and Al(111) clustering after the swift heavy ion interactions. While the XANES spectra at Ni L(2,3)-edges show decrease in the intensity of white line strength, the Al K-edge shows increase in intensity after irradiation. Above results imply that swift heavy ions induce low Z (i.e., Al) ion mass transport, changes in Al sp-Ni-d hybridization, and charge transfer. EXAFS results show that crystalline nature is improved after swift heavy irradiation which is consistent with XRD results.  相似文献   

2.
An X-ray absorption fine structure (XAFS) study has been conducted to reveal the local structure and chemical state of the copper in the complex of an acetylacetonate-based ligand (L1) and copper ion in acetonitrile solution. The copper ion in the complex was found to be divalent from the Cu K-edge X-ray absorption near-edge structure (XANES) spectrum. The FEFF (ab initio multiple scattering calculations of XAFS) were performed with the model compounds, whose structures were optimized by using MOPAC program with AM1 Hamiltonian. The comparative study of the experimental XAFS spectra and theoretical calculations from FEFF gave the perspectives for clarifying the coordination structure of the complex of L1 and copper ion.  相似文献   

3.
A hybrid preparative method was developed to prepare organosulfur-functionalized Au nanoparticles (NPs) on silicon nanowires (SiNWs) by reacting HAuCl(4) with SiNW in the presence of thiol. A number of organosulfur molecules-dodecanethiol, hexanethiol, 1,6-hexanedithiol, and tiopronin-were used to functionalize the Au surface. Size-selected NPs ranging from 1.6 to 7.5 nm were obtained by varying the S/Au ratio and the concentration of HAuCl(4). This method was further extended to the preparation Pd and Pd-Au bimetallic NPs on SiNWs. The morphology of the metal nanostructures was examined by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The local structure and bonding of the SiNW-supported metal nanostructures were studied using X-ray absorption fine structures (XAFS) [including both X-ray near-edge structures (XANES) and extended X-ray absorption fine structures (EXAFS)] at the Au L(3)-, Pd K-, S K-, and Si K-edges. It was also found that the annealing of the thiol-capped Au NPs up to 500 degrees C transforms the surface of the thiol-capped NPs to gold sulfide, as identified using Au L(3)- and S K-edge XANES. We also illustrate that this preparative approach can be used to form size-controllable Au NPs on carbon nanotubes.  相似文献   

4.
The finite difference method for near-edge structure is used to calculate X-ray absorption near-edge structure (XANES) spectra. We extend the range of calculation for copper above the K-shell threshold and compare the results with recent experimental data in the X-ray absorption fine structure (XAFS) region. Qualitatively the calculation predicts the location of the peaks but fails to accurately describe relative amplitudes.  相似文献   

5.
Titanium K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine the local Ti environments in the sol, gel, and xerogels of titanium oxide prepared by a sol-gel method. The xerogels were prepared by heat treatment at 200, 300, 400, 500, and 600 degrees C (denoted xero-200, xero-300, xero-400, xero-500, and xero-600), and the xerogels were doped with Fe(II), Ni(II), and Cu(II) ions (xero-Fe, xero-Ni, and xero-Cu). The local structures of the samples are compared using the pre- and post-edge features of the XANES spectra. Further analysis of the pre-edge features using Gaussian functions provides the energy and height of each peak, and the intensity ratios between peaks. Based on the resulting data, the samples can be classified into three groups: a weak Ti-Ti interaction group, an anatase-like structure group, and an anatase group. The sol, gel, xerogel, and xero-Ni are in the weak Ti-Ti interaction group, and the xero-200, xero-Fe, and xero-Cu are in the anatase-like structure group. The remaining samples are in the anatase group.  相似文献   

6.
《Chemical physics letters》1987,136(5):478-482
X-ray absorption near-edge structure, X-ray Ni Kβ emission, X-ray photoelectron Ni 2p, and optical spectra are reported for NiM2O4 spinels (M = Al,Cr,Ga,Fe,Mn). The characteristic parameters of the Ni(II)-O chemical bond may be correlated with the structural properties (cation repartition and charge distribution).  相似文献   

7.
A simple hydrothermal method has been developed for the systematic synthesis of lanthanide orthophosphate crystals with different crystalline phases and morphologies. It has been shown that pure LnPO(4) compounds change structure with decreasing Ln ionic radius: i.e., the orthophosphates from Ho to Lu as well as Y exist only in the tetragonal zircon (xenotime) structure, while the orthophosphates from La to Dy exist in the hexagonal structure under hydrothermal treatment. The obtained hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) products have a wirelike morphology. In contrast, tetragonal LnPO(4) (Ln = Ho, Er, Tm, Yb, Lu, Y) samples prepared under the same experimental conditions consist of nanoparticles. The obtained hexagonal LnPO(4) (Ln = La --> Tb) can convert to the monoclinic monazite structured products, and their morphologies remained the same after calcination at 900 degrees C in air (Hexagonal DyPO(4) is an exceptional case, it transformed to tetragonal DyPO(4) by calcination), while the tetragonal structure for (Ho--> Lu, Y)PO(4) remains unchanged by calcination. The resulting LnPO(4) (Ln = La --> Dy) products consist almost entirely of nanowires/nanorods with diameters of 5-120 nm and lengths ranging from several hundreds of nanometers to several micrometers. Europium doped LaPO(4) nanowires were also prepared, and their photoluminescent properties were reported. The optical absorption spectrum of CePO(4) nanowires was measured and showed some differences from that of bulk CePO(4) materials. The possible growth mechanism of lanthanide phosphate nanowires was explored in detail. X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, electron diffraction, infrared absorption spectra, X-ray photoelectron spectroscopy, optical absorption spectra, and photoluminescence spectra have been employed to characterize these materials.  相似文献   

8.
近年来苯基硅杂环戊二烯作为一类高效的有机发光二极管材料被广泛研究。本工作利用密度泛函理论结合芯态空穴近似研究了1, 1, 2, 3, 4, 5-六苯基硅杂环戊二烯分子中碳原子K壳层和硅原子L壳层的X射线光电子能谱和近边X射线吸收精细结构谱,与实验谱线符合较好。通过理论结果对实验测量的1, 1, 2, 3, 4, 5-六苯基硅杂环戊二烯分子的X射线谱进行了分析和标定。我们发现碳原子K壳层X射线光电子能谱在低能区283.8eV处的谱峰是由于与硅原子成键的两个电负性较强的碳原子导致的。碳原子K壳层近边X射线吸收精细结构谱中最强的吸收峰与苯分子的吸收峰类似。硅原子L壳层近边X射线吸收精细结构谱两个主要吸收峰分别来自于σSi-C*πSi-Ph*跃迁。  相似文献   

9.
Big changes in resistivity along with the changing of local structure in some oxide systems, such as high-temperature superconductors and colossal magnetoresistance system, strongly suggest the need of a systematic investigation of their local electronic and atomic structures. In this work we present the high-resolution X-ray emission spectra and the spin-polarized X-ray absorption near-edge spectroscopy (SPXANES) data at the Mn K-edge in the La(1-x)Sr(x)MnO(3). This experiment is based on a high-resolution large-acceptance crystal analyzer based on Si (111) and optimized for X-ray fluorescence spectroscopy. With a spherical bent crystal monochromator, a Mn Kbeta emission spectra with high resolution was obtained with a short collection time and SPXANES spectra of La(1-x)Sr(x)MnO(3) at room temperature were also measured at high temperature.  相似文献   

10.
X-ray absorption spectroscopy (XAS) was used to investigate the local structure arrangements of submicrocrystalline lithium iron phosphate and its precursors. The former material, proven to be very promising as active cathode material in lithium metal and lithium-ion batteries, was synthesized through a new procedure that combines a simple sol-gel precipitation with a moderate temperature (e.g., low cost) heat treatment. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra taken at the Fe K-edge pointed out the modification of the Fe site during the synthesis steps that allow one to produce the submicrometer size crystalline LiFePO4 (active material) useful for batteries applications. The XAS investigation has shown that such a material is different from the conventional crystalline LiFePO4 on the short-range order. The difference is attributed to the synthesis procedure.  相似文献   

11.
The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.  相似文献   

12.
An oxygen evolution catalyst that forms as a thin film from Ni(aq)(2+) solutions containing borate electrolyte (Ni-B(i)) has been studied by in situ X-ray absorption spectroscopy. A dramatic increase in catalytic rate, induced by anodic activation of the electrodeposited films, is accompanied by structure and oxidation state changes. Coulometric measurements correlated with X-ray absorption near-edge structure spectra of the active catalyst show that the nickel centers in activated films possess an average oxidation state of +3.6, indicating that a substantial proportion of nickel centers exist in a formal oxidation state of Ni(IV). In contrast, nickel centers in nonactivated films exist predominantly as Ni(III). Extended X-ray absorption fine structure reveals that activated catalyst films comprise bis-oxo/hydroxo-bridged nickel centers organized into sheets of edge-sharing NiO(6) octahedra. Diminished long-range ordering in catalyst films is due to their ostensibly amorphous nature. Nonactivated films display a similar oxidic nature but exhibit a distortion in the local coordination geometry about nickel centers, characteristic of Jahn-Teller distorted Ni(III) centers. Our findings indicate that the increase in catalytic activity of films is accompanied by changes in oxidation state and structure that are reminiscent of those observed for conversion of β-NiOOH to γ-NiOOH and consequently challenge the long-held notion that the β-NiOOH phase is a more efficient oxygen-evolving catalyst.  相似文献   

13.
Ni-isocyanide and Ni-acac complexes have been studied by X-ray absorption spectroscopy. Theoretical analysis has been done using self-consistent full multiple scattering (MS) approach within both muffin-tin (MT) model of the potential and non-MT finite deference method. For the isocyanide complex, it was shown that MS theoretical spectra reproduce all structural details of the X-ray absorption near-edge structure (XANES), but also that it is important to consider the non-MT effects in the potential for a correct simulation of the shape of the pre-edge structures. The contribution of a non-constant potential in the interstitial regions is extremely important for the interpretation of the XANES of Ni(acac)2.  相似文献   

14.
The speciation and quantification of sulfur species based on sulfur K-edge x-ray absorption spectroscopy is of wide interest, particularly for biological and petroleum science. These tasks require a firm understanding of the sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of relevant species. To this end, we have examined the gas phase sulfur 1s NEXAFS spectra of a group of simple thiol and thioether compounds. These high-resolution gas phase spectra are free of solid-state broadening, charging, and saturation effects common in the NEXAFS spectra of solids. These experimental data have been further analyzed with the aid of improved virtual orbital Hartree-Fock ab initio calculations. The experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve assignment of spectroscopic features relevant for the speciation and quantification of the sulfur compounds.  相似文献   

15.
The X-ray absorption near-edge structures (XANES) at the F K-edge of alpha-AlF(3), beta-AlF(3) and a tetragonal AlF(3) phase are analysed by a combination of ab initio calculations with the FEFF8 code and a phenomenological discussion of local molecular orbital (MO) symmetries at the absorbing fluorine atoms. By means of a Walsh correlation diagram it is shown that the two intense absorption bands observed at the F K-edges of the AlF(3) polymorphs can be interpreted as transitions to anti-bonding MOs in [Al-F-Al]-units that have C(2v) and D(infinity h) point group symmetries. The energies of both anti-bonding orbitals are very insensitive to the angle between the Al-F bonds, which explains the close similarity of the XANES signatures from the three polymorphs. The FEFF8 analysis shows that the increased broadening of the XANES structure for beta-AlF(3) and the tetragonal AlF(3) phase is due to the superposition of the individual absorption spectra from the crystallographically distinct F species. The interpretation in terms of local MOs provides for the first time a "chemically intuitive" approach to investigations of solid fluorides by XANES spectroscopy and provides a simple conceptual framework for the discussion of the electronic structure in AlF(3) materials.  相似文献   

16.
Recent developments in the understanding of the biosynthesis of the active site of the nitrogenase enzyme, the structure of the iron centre of [Fe]-hydrogenase and the structure and biomimetic chemistry of the [FeFe] hydrogenase H-cluster as deduced by application of X-ray spectroscopy are reviewed. The techniques central to this work include X-ray absorption spectroscopy either in the form of extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES) and nuclear resonant vibrational spectroscopy (NRVS). Examples of the advances in the understanding of the chemistry of the system through integration of a range of spectroscopic and computational techniques with X-ray spectroscopy are highlighted. The critical role played by ab initio calculation of structural and spectroscopic properties of transition-metal compounds using density functional theory (DFT) is illustrated both by the calculation of nuclear resonance vibrational spectroscopy (NRVS) spectra and the structures and spectra of intermediates through the catalytic reactions of hydrogenase model compounds.  相似文献   

17.
Arrays of highly ordered Zn(1-x)MnxS quantum wires with x ranging from 0.01 to 0.3 and with lateral dimensions of 3, 6, and 9 nm were synthesized within mesoporous SiO2 host structures of the MCM-41 and SBA-15 type. The hexagonal symmetry of these arrays (space group p6m) and the high degree of order was confirmed by X-ray diffraction and transmission electron microscopy (TEM) studies. Physisorption measurements show the progressive filling of the pores of the SiO2 host structures, while TEM and Raman studies reveal the wire-like character of the incorporated Zn(1-x)MnxS nanostructures. X-ray absorption near-edge structure, extended X-ray absorption fine structure, photoluminescence excitation (PLE), and electron paramagnetic resonance studies confirm the good crystalline quality of the incorporated Zn(1-x)MnxS guest species and, in particular, that the Mn2+ ions are randomly distributed and are situated on tetrahedrally coordinated cation sites of the Zn(1-x)MnxS wires for all x up to 0.3. The amount of Mn2+ ions loosely bound to the surface of the Zn(1-x)MnxS nanowires is less than 4% of the total Mn content even for the 3 nm nanostructures up to the highest Mn content of x = 0.3. The effects of the reduction of the lateral dimensions on electronic properties of the diluted magnetic semiconductor were studied by PLE spectroscopy. Due to the quantum confinement of the excitons in the wires an increase of the direct band gap with decreasing particle size is observed.  相似文献   

18.
The experimental solid-state near-edge X-ray absorption fine structure spectra for a series of glycine-related samples including alpha-glycine, beta-glycine, glycinium chloride, glycinium trifluoroacetate, and sodium glycinate at the C, N, and O K-edges measured under identical conditions are reported and compared. An assignment of spectral features for alpha-glycine is proposed on the basis of extended theoretical simulations of polarization-dependent spectra performed within the real-space multiple-scattering formalism explicitly taking into account the intermolecular environment of a glycine molecule in a crystal.  相似文献   

19.
Self-aligned nanostructures (SAN) made by reacting Co nanoparticles with crystalline Si substrates at high temperatures were studied with grazing incidence X-ray absorption spectroscopy (GI-XAS). The results from extended X-ray absorption fine structure (EXAFS) analysis and X-ray absorption near-edge spectroscopy (XANES) were used to identify SAN as crystalline CoSi2. Theoretical calculations of EXAFS and XANES spectra of several crystalline cobalt silicides were performed with the FEFF8 package. On the basis of these studies, the SAN samples were determined to contain nearly pure CoSi2.  相似文献   

20.
The results of ultrafast selected energy x-ray absorption spectroscopy (USEXAS) investigations of Ni and Zn species are presented. The USEXAS measurements described here employed characteristic x-ray radiation of L(alpha) and L(beta) from an ultrafast laser-driven W x-ray target to probe the K absorption edges of Ni and Zn, respectively. Static x-ray absorption edge spectra of six Ni and Zn species in either solid or solution form were obtained. Simulations of near-edge x-ray absorption spectra of these Ni and Zn species were carried out with FEFF. The results of USEXAS measurements were in general agreement with the theoretically simulated spectra and those measured with synchrotron x-ray radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号