首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil-blade dynamics in reverse-rotational rotary tillage   总被引:3,自引:0,他引:3  
Soil cutting and the clod crack formation process during reverse-rotational rotary tillage in a heavy clay soil were investigated. Of particular interest was the relationship between clod crack formation and tillage resistance during sequential rotations of the tillage blade. Investigation of the crack formation process is helpful to develop and to design more effective and high performance tillage methods. This paper describes two new discoveries. The first is that the tillage resistance showed a higher cross-correlation between sequential rotations within a certain distance of tilling, while there was little or no cross-correlation between different tillage plots that were separated more than 0.4 m. The forward distance of untilled soil that was disturbed by the tillage blade was estimated to be 36.4 mm. This is the distance of two tillage pitches. The second discovery involved the blade frequencies during tilling. Fluctuation in tillage resistance frequencies of a single blade was nearly equal to the predicted occurrence of crack intervals on the tilled clod's surface. This frequency was 120 Hz. When these frequencies were translated into the distance along the trochoid trajectory of the blade cutting edge, they were the same as the length of the clods tilled by the reverse-rotational rotary tiller. These minute vibrations in the tillage resistance were considered the important indexes for recognizing the tilled soil conditions and the tilled clod failure on the reverse-rotational rotary tiller. The analytical results of this paper will be utilized for the active occurrence of the cracks regarding with natural frequency of the blade and the operation condition of the reverse-rotational rotary tiller.  相似文献   

2.
In the past, investigators of rotary tillage tools have concentrated their efforts in developing relationships between the power requirement and operational parameters of tillers. Many researchers have developed empirical force and torque prediction models without giving due consideration to the strength properties of soil. In the absence of proper soil-tool behaviour equations, the designers of rotary tools have relied on these empirical approaches. In recent years, the authors have proposed the first theoretical model for two-dimensional soil failure by a rotary powered blade. The presently available state-of-the-art ideas on rotary tilling force prediction models has been presented in this paper.  相似文献   

3.
Torque encountered during the rotary excavation of soils (e.g., when using the DJM method for deep soft ground improvement) poses a serious detrimental effect not only to the excavating machines but also to the viability of a project as a whole. Consequently, this research investigates ways and means of realizing the reduction of torque encountered during the excavation of cohesionless soils. In this paper, the development of a torque model for a rotary excavation of cohesionless soils is proposed. Whereas in most of the soil tillage theories (i) the cutting tool is usually partially exposed at the surface, and (ii) excavation is generally longitudinal, this model is significant because; (i) the excavation process is radial, and (ii) the blade is completely immersed in the excavated medium. Various theories for the prediction of forces acting during the interaction of cutting tools and soils in conjunction with localized modeling of all the other forces, applied and adopted to suit this excavation geometry, have been applied in the development of the torque model. Experimental data was obtained from excavation experiments performed on compacted completely saturated sand samples. Within the experimental and theoretical limitations, the results showed that this model represented the excavation process.  相似文献   

4.
Soil disturbance and force mechanics of vibrating tillage tool   总被引:1,自引:0,他引:1  
Experiments were conducted with vibrating tillage tools in a sandy loam soil. It was observed that during oscillating operation, initially draft increased slightly with an increase in forward speed but later it decreased. For the non-oscillating operation, draft increased continuously with increase in forward speed. The ratio of draft from oscillating to non-oscillating mode varied from 0.63 to 0.93. The total power required for oscillating operation was 41–45% more than the power required for non-oscillating operation. The soil surface was cracked due to tool motion showing the characteristics of lifting up of soil clods during the oscillating operation, whereas it showed the characteristics of soil flow during non-oscillating operation. The soil was pulverized more due to oscillating than non-oscillating operation. The reduction in dry bulk density of soil mass in the oscillating operation was about 70–270% more than that during the non-oscillating mode.  相似文献   

5.
Effect of rainfall on the surface micro-relief of tilled soil   总被引:1,自引:0,他引:1  
Surface micro-reliefs after four different tillage treatments were measured with a relief meter. Measurements were taken at the time of tillage and on four successive dates. The relief measurements were used to calculate the autocorrelation functions, the power spectra, and the distributions of surface slopes. Changes in parameters of these functions are related to estimates of the cumulative rainfall kinetic energy between the readings and the tensile yield stress of aggregates from the tilled soil. The effect of rainfall was to reduce the roughness to a given proportion in a time which was independent of the initial roughness of the surface, and hence independent of the type of implement used.  相似文献   

6.
Currently, chemical methods of weed control are increasingly being replaced by mechanical weeding. One of the promising mechanical devices for weed control is a rotary loosening and separating stratifier. This tillage machine can provide high quality tillage to a depth of up to 18 cm. Its performance is determined by the width of the grip of the gun and the speed of movement and is limited by the traction capabilities of the tractor. Using the Goryachkin formula for the traction resistance of a tillage machine, the authors obtained the dependence of productivity on the width of the grip and the speed of movement at different depths of tillage. The obtained dependencies on the example of tractors John Deere 8330, HTZ 16131-05 and MTZ 1523.3 showed the presence of a pronounced maximum, which led to the solution of the optimization problem. The article presents a method for calculating the optimal width of the grip and the speed of movement that ensure the maximum productivity of the tillage machine, depending on the depth of processing and the specific resistance of the soil. The use of optimal parameters of the tillage machine allows you to increase its productivity by 2–3 times.  相似文献   

7.
Force and pressure distribution under vibratory tillage tool   总被引:2,自引:0,他引:2  
Experiments were conducted to study the force requirement and pressure distribution under vibratory tillage tools in a soil bin with a sandy loam soil. The tool was oscillated sinusoidally in the direction of soil bin travel. An octagonal ring transducer and pressure sensors were used to measure the forces and soil pressure on the blade. The tool was operated at oscillating frequency of 4.5–15.6 Hz and amplitude of 11–26 mm. The soil bin travel speed was varied from 0.05 to 0.224 m/s. The test results obtained showed both the horizontal force and the vertical force decreased with increase in oscillating frequency. The normal pressure on the blade surface varied considerably. The peak normal pressure was found to increase with increase in oscillating frequency, oscillating amplitude and soil bin travel speed. The change in average normal pressure with change in oscillating frequency and amplitude was also investigated.  相似文献   

8.
A study on four mouldboard ploughs, that are commonly used with animal traction in Kenya, was conducted. Draught, suction and torsion loads were measured and specific draught evaluated in field tests on four sites with typical agricultural soil conditions. Draught and suction are the horizontal and vertical components of the reaction to soil force, respectively, while torsion is the resisting moment about the plough shank. The objective was to quantify these parameters and to study their characteristics under variable conditions at operation, at speeds up to 1.12 m/s and tillage depths between 0 and 150 mm in an attempt to optimize the design, selection and utilization of mouldboard ploughs for animal traction in Kenya. It was found that depth of tillage is the most critical factor, and draught and suction increased significantly with depth while specific draught increased or decreased depending on the soil type. Draught and specific draught increased significantly with speed. The increase in suction with depth probably implies an increased stability in the ploughing operation, while its reduction with speed indicates a potential instability of plough control with varying speeds. Consequently, aiming for steady motion in the utilization of animal traction may aid in the optimization. It was also found that ploughs with a high specific draught (kN/m) are expected to experience higher torsional loads on the shanks. The characteristic draught, specific draught and suction loads of the ploughs were described by quadratic functions in speed and depth of tillage with coefficients of determination (R2) ranging from 0.55 to 0.99. A significant difference in the coefficient of variation of draught loads in the three soil types probably implies that optimal duration for use of animal traction in tillage should be dependent on soil type.  相似文献   

9.
Enhancement of the potential root growth volume is the main objective of farmers when they establish a conventional tillage system. Therefore, the main function of primary tillage is to increase soil’s structural macroporosity. In spite of this, during secondary tillage operations on these freshly tilled soils, the traffic on seedbeds causes significant increases in soil compaction. The aim of this paper was to quantify soil compaction induced by tractor traffic on a recently tilled non consolidated soil, to match ballast and tyre size on the tractors used during secondary tillage. The work was performed in the South of the Rolling Pampa region, Argentina. Secondary tillage traffic was simulated by one pass of a conventional 2WD tractor, using four configurations of bias-ply rear tyres: 18.4×34, 23.1×30, 18.4×38 and 18.4×38 duals, two ballast conditions were used in each configuration. Soil bulk density and cone index in a 0 to 600 mm profile were measured before and after traffic. Topsoil compaction increased as did ground pressure. Subsoil compaction increased as total axle load increased and was independent from ground pressure. At heavy conditions, topsoil levels always showed higher cone index values. From 150 to 450 mm depth, the same tendency was found, but with smaller increases in the cone index parameter, 22 to 48%, averaging 35%. Finally, at the deepest layer considered, 600 mm, differential increases due to the axle load are great enough as to be considered similar to those found in the upper horizon, 36 to 64%, averaging 55%. On the other hand, bulk density tended to be less responsive than cone index to the traffic treatments. Topsoil compaction can be reduced by matching conventional bias-ply tyres with an optimized axle weight.  相似文献   

10.
Three-dimensional velocity fields were measured using tomographic particle image velocimetry (Tomo-PIV) on a model of the blade of a small-scale horizontal axis wind turbine (HAWT) to study the effects of rotation on separated turbulent flows during stall delay at a global tip speed ratio (TSR) of 3 and a Reynolds number of 4800. The flow fields on a static airfoil were also measured at a similar angle-of-attack (AOA) and Reynolds number for comparison. It was observed that the blade’s rotation in the streamwise direction significantly affected both the mean flow and the turbulence statistics over the suction surface. The mean velocity fields revealed that, different from the airfoil flow at large AOA, the recirculation region with reversed flow did not exist on the suction surface of the blade and the flow was rather attached. Mean spanwise flow from blade’s root to its tip was also generated by the rotation. The mean vorticity vector of the blade flow was found to be tilted in the rotational direction of the blade, as well as in the wall-normal direction. Of particular effects of the rotation on Reynolds stresses were the enhancement of 〈w 2〉 and the creation of strong 〈v w〉. The production of Reynolds stresses was also affected by blade’s rotation directly through the rotational production terms and indirectly by dramatically changing the fluctuating velocity fields. The distribution of enstrophy was observed to be modified by rotation, too.  相似文献   

11.
为揭示置障管道内甲烷/空气预混火焰传播特性,运用高速摄影技术对甲烷/空气预混火焰的形状变化和火焰前锋的速度特性进行实验,并利用大涡模拟对管道内的流场结构进行数值分析。结果表明:置障管道内依次出现了球形火焰、指尖形火焰及“蘑菇”状火焰,且“蘑菇”状火焰出现之后,火焰开始反向传播;“蘑菇”状火焰是双涡旋结构与火焰前锋面相互作用的结果,而火焰的反向传播是由流场中出现逆流结构引起的;障碍物对火焰前锋有明显的加速作用;大涡模拟成功再现了实验中观察到的火焰形状、火焰前锋速度及流场结构,说明大涡模拟适用于置障管道内预混火焰传播特性的研究。  相似文献   

12.
Discrete Element Method (DEM) has been applied in recent studies of soil cutting tool interactions in terramechanics. Actual soil behavior is well known to be inexpressible by simple elemental shapes in DEM, such as circles for 2D or spheres for 3D because of the excessive rotation of elements. To develop a more effective model for approximating real soil behavior by DEM, either the introduction of a rolling resistance moment for simple elemental shape or the combination of simple elements to form a complex model soil particle shape cannot be avoided. This study was conducted to investigate the effects of elemental shape on the cutting resistance of soil by a narrow blade using 3D DEM. Six elemental shapes were prepared by combining unit spheres of equal elemental radius. Moreover, cutting resistance was measured in a soil bin filled with air-dried sand to collect comparative data. The elemental shape, with an axial configuration of three equal spheres overlapped with each radius, showed similar results of soil cutting resistance to those obtained experimentally for the six elemental shapes investigated.  相似文献   

13.
Application of rotary tillage has been increased due to less tillage passes required, reduced draft, and greater efficiency through reduction in wheel slippage. Early failure of the bearing of tractor power take-off (PTO) shaft was observed in tractors of power range 30–35 horsepower during rotary tillage. An instrumentation setup involving an extended octagonal ring transducer (EORT) was developed and installed at the bottom of the bearing to measure the axial load and the vertical component of the radial load. The horizontal component of radial load was measured by strain gauges. Based on measured loads, the bearing life was assessed. Independent variables were: operating depth, number of blades, gear setting, engine speed, and tyre size. The average axial and radial loads varied from 786–3869 N, and 134–430 N, respectively. However, bearing experienced very high peak loads during each trial. The peak axial and radial loads was recorded between 1081–7534 N and 566–1794 N, respectively. The estimated bearing life based on peak loads was 171.98–28341.39 h. Based on the findings, it may be concluded that the average loads were not sufficient to cause quick failure of PTO bearing, rather sudden peak loads might be the root cause of early failure.  相似文献   

14.
Experiments were conducted in a Bangkok clay soil to evaluate the performance of a rotary tiller equipped with reverse or conventional blades. The conventional rotary tiller was equipped with C-type blades whereas the reverse-rotary tiller had new types of blades. Tests were conducted on wet land as well as in dry land. Tests were conducted at tractor forward speeds of 1.0, 1.5 and 2.0 km/h. A power-take-off (PTO) power consumed was calculated from the PTO torque and speed. The results indicated that the PTO power consumption was less for the reverse-rotary tiller compared to the conventional tiller for all passes and forward speeds. For both rotary tillers, power consumption decreased as the number of passes increased, whereas power consumption increased when the forward speed was increased. At all forward speeds, the power consumption was the highest during the first pass and lowest during the third pass. The maximum difference of PTO power requirement was after the first pass at 1.0 km/h forward speed. The reverse-rotary tiller consumed about 34% less PTO power under this condition.  相似文献   

15.
The effect of a casing fence on the tip-leakage flow of an axial flow fan is investigated using large eddy simulation. A fence is attached on the shroud near the trailing edge of an axial flow fan used in an outdoor unit of air conditioner. The Reynolds number is 547,000 based on the blade tip radius and tip velocity. At the design condition, the fan efficiency is increased by the casing fence. The roles of the fence are to block backward leakage flows near the shroud and to weaken the movement of the tip-leakage vortex (TLV) in the azimuthal direction. Also, the fence reduces the double-leakage tip-clearance flow generated at the aft part of the blade tip due to the TLV-blade interaction, reducing the strength of the tip-separation vortex. Consequently, the tip leakage and total pressure losses are reduced, and the efficiency is increased. The pressure fluctuations on the aft part of the blade tip of the pressure surface caused by the TLV-blade interaction are also significantly reduced by the fence, indicating reduction of the noise source. According to the interaction between the fence and backward leakage flow induced by the TLV, the fence significantly and slightly increases the aerodynamic performances at the design and peak efficiency conditions, respectively, but reduces them at an overflow condition.  相似文献   

16.
空气阻力对轻质物料筛分的影响是不可忽略的,本文利用达朗贝尔原理推导出物料在正向滑动、反向滑动和抛掷运动过程中的运动方程,并利用MATLAB软件仿真了物料在运动过程中的位移和速度,将结果与不考虑空气阻力时的物料运动进行对比分析,讨论了主要物理参数对物料运动的影响规律,为轻质物料的筛分提供理论参考.  相似文献   

17.
The affect of multigrid acceleration implemented within an upwind‐biased Euler method is presented, and applied to fixed‐wing and rotary‐wing flows. The convergence of fixed‐ and rotary‐wing computations is shown to be vastly different, and multigrid is shown to be less effective for rotary‐wing flows. The flow about a hovering rotor suffers from very slow convergence of the inner blade region, where the flow is effectively incompressible. Furthermore, the vortical wake must develop over several turns before convergence is achieved, whereas for fixed‐wing computations the far‐field grid and solution have little significance. Results are presented for single mesh and two, three, four, and five level multigrid, and using five levels a reduction in required CPU time of over 80 per cent is demonstrated for rotary‐wing computations, but 94 per cent for fixed‐wing computations. It is found that a simple V‐cycle is the most effective, smoothing in the decreasing mesh density direction only, with a relaxed trilinear prolongation operator. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
A non-linear 3-D finite element analysis of soil failure with tillage tools   总被引:2,自引:0,他引:2  
A non-linear 3-D finite element model was developed to study the soil failure under a narrow tillage blade. The weighted residual method was applied to formulate the finite element model. The Duncan and Chang hyperbolic stress-strain model was used in the analysis. This finite element model also takes into account friction at the soil-tool interface, and progressive and continuous cutting. A FORTRAN program was written to carry out the finite element analysis. The results provided soil forces, a progressive developed failure zone, displacement field and stress distribution along the tool surface. Tillage were conducted in the laboratory soil bin to verify soil forces from the finite element analysis. The comparison between the results from the finite element model and those from the soil bin tests was reasonably good.  相似文献   

19.
This research is devoted to the modeling of high-speed rectilinear penetration of a rigid axisymmetric body (impactor with a flat bluntness) into an elastic–plastic media with account for its rotation about the axis of symmetry. The body has an arbitrary shape of the meridian. The resistance to the motion is represented as the sum of the body drag and the contribution of friction. The dynamic system governing the body motion is derived and the qualitative and numerical analysis of the projectile movement and perforation of a slab are performed. The problem of shape optimization of impactor with a flat bluntness is studied using evolutionary algorithm.  相似文献   

20.
A self-similar solution of the Navier-Stokes equations governing gas flows with constant transport coefficients in rotary log-spiral two-dimensional channels is obtained and analyzed. The solution and its existence depend on the following dimensionless parameters: the Reynolds number Re; the parameterM o characterizing the channel rotation; the self-similarity parameters and responsible for the channel shape; the direction of channel rotation; and, finally, the wall temperature ratio. A numerical solution of the system of second-order ordinary differential equations gives the ranges of the governing parameters on which self-similar solutions for the gas flow in a rotary channel can exist.Perm'-Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 44–50, November–December, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号