首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrathin multilayer films of a rare-earth-containing polyoxometalate Na9[Eu(W5O18)2](EW) and poly (allymamine hydrochloride)(PAH) have been prepared by layer-by-layer self-assembly from dilute aqueous solution.The fabrication process of the EW/PAH multilaryer films was followed by UV-vis spectroscopy and ellipsometry,which show that the deposition process is linear and highly reproducible from layer to layer.An average EW/PAH bilayer thickness of ca.2.1nm was determined by ellipsometry.In addition,the scanning electron microscopy(SEM) image of the EW/PAH film indicates that the film surface is relatively uniform and smooth.The photoluminescent properties of these films were also investigated by fluorescence spectroscopy.  相似文献   

2.
Ultrathin multilayer films of two lanthanide polyoxometalates (LPOMs), K(17)[Eu(P(2)W(17)O(61))(2)] (EPW) and K(13)[Eu(SiW(11)O(39))(2)] (ESW), and poly(allylamine hydrochloride) (PAH) have been prepared by layer-by-layer self-assembly from dilute aqueous solutions. UV-vis spectroscopy and ellipsometry respectively show that the absorbance values at characteristic wavelengths and the thicknesses of the multilayer films increase linearly with the number of LPOM/PAH bilayers, suggesting that the deposition process is linear and highly reproducible from layer to layer. Average thicknesses of ca. 3.4 and 2.4 nm were determined for the EPW/PAH and ESW/PAH bilayers by ellipsometry, respectively. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) images provide the surface morphology of the LPOM/PAH films, indicating that the film surface is relatively uniform and smooth. The photoluminescent properties of these films have also been investigated by fluorescence spectroscopy. The LPOM/PAH multilayer film has a good thermal stability as shown by UV-vis, X-ray photoelectron, and fluorescence spectra.  相似文献   

3.
We report the influence of polyelectrolyte (PE) multilayer films prepared from poly(styrene sulfonate)-poly(acrylic acid) (PSS-PAA) blends, deposited in alternation with poly(allylamine hydrochloride) (PAH), on film wettability and the adsorption behavior of the protein immunoglobulin G (IgG). Variations in the chemical composition of the PAH/(PSS-PAA) multilayer films, controlled by the PSS/PAA blend ratio in the dipping solutions, were used to systematically control film thickness, surface morphology, surface wettability, and IgG adsorption. Spectroscopic ellipsometry measurements indicate that increasing the PSS content in the blend solutions results in a systematic decrease in film thickness. Increasing the PSS content in the blend solutions also leads to a reduction in film surface roughness (as measured by atomic force microscopy), with a corresponding increase in surface hydrophobicity. Advancing contact angles (theta) range from 7 degrees for PAH/PAA films through to 53 degrees for PAH/PSS films. X-ray photoelectron spectroscopy measurements indicate that the increase in film hydrophobicity is due to an increase in PSS concentration at the film surface. In addition, the influence of added electrolyte in the PE solutions was investigated. Adsorption from PE solutions containing added salt favors PSS adsorption and results in more hydrophobic films. The amount of IgG adsorbed on the multilayer films systematically increased on films assembled from blends with increasing PSS content, suggesting strong interactions between PSS in the multilayer films and IgG. Hence, multilayer films prepared from blended PE solutions can be used to tune film thickness and composition, as well as wetting and protein adsorption characteristics.  相似文献   

4.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

5.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

6.
Deposition of layer-by-layer polyelectrolyte multilayer (PEM) films has been a widely applied surface modification technique to improve the biocompatibility of biomaterials. The objective of this study was to investigate the impact of the deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) multilayer films on adhesion, growth and differentiation of osteoblasts-like MG63 cells. PAH and PAA were deposited sequentially onto tissue culture polystyrene at either pH 2.0 or pH 6.5 with 4-21 layers. While the MG63 cells attached poorly on the PAH/PAA multilayer films deposited at pH 2.0, while the cells adhered to the PEM films deposited at pH 6.5, depending on layer numbers. Cell adhesion, proliferation and osteogenic activities (alkaline phosphatase activity, expression of osteogenic marker genes and mineralization) were highest on the 4-layer PAH/PAA film and decreased with increasing layer numbers. On the other hand, the behavior of MG63 cells did not show any difference on the adjacent even and odd layers, except PEM4 and PEM5, i.e. the surface charges of the PAH/PAA multilayer films with over ten layers seem indifferent to osteoblastic functions. The results in this study suggested that the mechanical properties of PEM films may play a critical role in modulating the behavior of osteoblasts, providing guidance for application of PEM films to osteopaedic implants.  相似文献   

7.
利用静电吸附自组装技术将酸化处理后的单壁碳纳米管(SWNTs)与超支化重氮盐(DAS)组装成多层膜.利用紫外光谱、椭偏仪、原子力显微镜、扫描电镜、拉曼光谱等对自组装膜的生长过程、膜厚增长、自组装膜表面形貌以及纳米管在膜中的存在状态等进行了检测,并利用纳米压痕仪测试了自组装膜的硬度和弹性模量.研究结果表明,SWNTs与DAS不仅发生了静电吸附,而且还发生了化学交联.同时碳纳米管均匀分散在自组装膜中.这两种因素的共同作用使得自组装膜表现出良好的纳米力学性能,硬度达到2.0GPa左右,弹性模量达到10.0GPa左右,而且可以从基底上剥离下来成为独立支撑膜.  相似文献   

8.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

9.
Patterned poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) multilayer films with line structures of different lateral size and vertical height were fabricated by a room-temperature imprinting technique, and their cell adhesion properties were investigated. The nonimprinted PAA/PAH multilayer films are cytophilic toward NIH/3T3 fibroblasts and HeLa cells whether PAA or PAH is the outer most layer. In contrast, the PAA/PAH multilayer films with a 6.5-microm-line/3.5-microm-space pattern structure are cytophobic toward NIH/3T3 fibroblasts and HeLa cells when the height of the lines is 1.29 microm. By either increasing the lateral size of the patters to 69-microm-line/43-mum-space or decreasing the height of the imprinted lines to approximately 107 nm, imprinted PAA/PAH multilayer films become cytophilic. This kind of transition of cell adhesion behavior derives from the change of the physical pattern size of the PAA/PAH multilayer films and is independent of the chemical composition of the films. The easy patterning of layer-by-layer assembled polymeric multilayer films with the room-temperature imprinting technique provides a facile way to tailor the cellular behavior of the layered polymeric films by simply changing the pattern dimensions.  相似文献   

10.
Multilayer films of oligo(pyrenebutyric acid) (OPB) and N,N'-bis(N,N-dimethylaminopropylaminopropyl)-3,4,9,10-perylenediimide (BDMAPAP-PDI) were successfully fabricated by layer-by-layer deposition. Multilayer growth was monitored by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, ellipsometry, and atomic force microscopy (AFM). It was found that extraction was scarcely observed although both components (OPB and BDMAPAP-PDI) have low molecular weights and both electrostatic interactions and pi-pi stacking contributed to the multilayer deposition. The multilayers exhibit a rapid photocurrent response, and excitations of both OPB and BDMAPAP-PDI can lead to the effective charge dissociation. The incident photon to current conversion efficiency (IPCE) of the composite film with 5 bilayers was measured to be 1.29% at the absorption peak of BDMAPAP-PDI. Fluorescence quenching and photovoltaic conversion studies indicated that strong photoinduced charge transfer interactions occurred at the area of OPB/BDMAPAP-PDI heterojunction in the films, which strongly enhanced the photoresponse of the multilayer films.  相似文献   

11.
We report the use of copolymers synthesized with specific block ratios of weakly and strongly charged groups for the preparation of stable, pH-responsive multilayers. In this study, we utilized reversible addition-fragmentation chain transfer (RAFT) polymerization in the synthesis of novel pH-sensitive copolymers comprising block domains of acrylic acid (AA) and styrene sulfonate (SS) groups. The PAA x- b-SS y copolymers, containing 37%, 55%, and 73% of AA groups by mass (denoted as PAA 37- b-SS 63, PAA 55- b-SS 45, and PAA 73- b-SS 27, respectively), were utilized to perform stepwise multilayer assembly in alternation with poly(allylamine hydrochloride), PAH. The ratio of AA to SS groups, and the effect of the pH of both anionic and cationic adsorption solutions, on multilayer properties, were investigated using ellipsometry and atomic force microscopy. The presence of SS moieties in the PAA x- b-SS y copolymers, regardless of the precise composition, lead to films with a relatively consistent thickness. Exposure of these multilayers to acidic conditions postassembly revealed that these multilayers do not exhibit the characteristic large swelling that occurs with PAA/PAH films. The film stability was attributed to the presence of strongly charged SS groups. PAA x- b-SS y/PAH films were also formed on particle substrates under various adsorption conditions. Microelectrophoresis measurements revealed that the surface charge and isoelectric point of these core-shell particles are dependent on assembly pH and the proportion of AA groups in PAA x- b-SS y. These core-shell particles can be used as precursors to hollow capsules that incorporate weak polyelectrolyte functionality. The role of AA groups in determining the growth profile of these capsules was also examined. The multilayer films prepared may find applications in areas where pH-responsive films are required but large film swelling is unfavorable.  相似文献   

12.
Layer-by-layer assembled polyelectrolyte multilayer films of poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) have been successfully patterned by room-temperature imprinting using a Norland Optical Adhesives (NOA 63) polymer mold. The proper amount of water in the PAA/PAH multilayer film can decrease the viscosity of the film and facilitate the imprinting. Many factors, such as imprinting pressure, length of imprinting time, and the structure and size of the patterns in the polymer mold, can produce an influence on the final imprinted pattern structures on multilayer films. A high imprinting pressure of 100 bar and elongated imprinting time of several hours is needed to achieve a patterned PAA/PAH multilayer film with a feature size of several tens of micrometers. With a twice imprinting, grid structures can be successfully produced when a NOA 63 mold having line structures is used. Room-temperature imprinting by using polymer NOA 63 mold provides a facile way to fabricate layered polymeric films with various kinds of pattern structures.  相似文献   

13.
Prussian blue (PB) particles with the size of ca. 5 nm were synthesized and immobilized in a multilayer structure, as a strategy for the potential development of an amperometric transducer for oxidase-enzyme-based biosensors. Multilayer films composed of PB and poly(allylamine hydrochloride) (PAH) were prepared via layer-by-layer (LbL) sequential deposition. The process was carefully monitored by UV-vis spectroscopy and cyclic voltammetry. The increase of the redox current peaks during the layer-by-layer deposition demonstrated that charge propagation within the film occurs. Linear increase of UV-vis absorbance with the number of deposited bilayers indicates that well-organized systems have been elaborated. ITO electrodes coated with PB/PAH films were used successfully for detecting H2O2, sensitivity being dependent on the number of PB/PAH layers.  相似文献   

14.
Layer-by-layer assembly of two palladium coordination-based multilayers on silicon and glass substrates is presented. The new assemblies consist of rigid-rod chromophores connected by terminal pyridine moieties to palladium centers. Both colloidal palladium and PdCl2(PhCN)2 were used in order to determine the effect of the metal complex precursor on multilayer structure and optical properties. The multilayers were formed by an iterative wet-chemical deposition process at room temperature in air on a siloxane-based template layer. Twelve consecutive deposition steps have been demonstrated resulting in structurally regular assemblies with an equal amount of chromophore and palladium added in each molecular bilayer. The optical intensity characteristics of the metal-organic films are clearly a function of the palladium precursor employed. The colloid-based system has a UV-vis absorption maximum an order of magnitude stronger than that of the PdCl2-based multilayer. The absorption maximum of the PdCl2-based film exhibits a significant red shift of 23 nm with the addition of 12 layers. Remarkably, the structure and physiochemical properties of the submicron scale PdCl2-based structures are determined by the configuration of the approximately 15 angstroms thick template layer. The refractive index of the PdCl2-based film was determined by spectroscopic ellipsometry. Well-defined three-dimensional structures, with a dimension of 5 microm, were obtained using photopatterned template monolayers. The properties and microstructure of the films were studied by UV-vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray reflectivity (XRR), scanning electron microscopy (SEM), and aqueous contact angle measurements (CA).  相似文献   

15.
Photocatalytic multilayer nanocomposite films composed of anatase TiO2 nanoparticles and lignosulfonates (LS) were fabricated on quartz slides by the layer‐by‐layer (LBL) self‐assembly technique. X‐ray photoelectron spectroscopy (XPS), UV‐vis spectroscopy and atomic force microscopy (AFM) were used to characterize the TiO2/LS multilayer nanocomposite films. Moreover, the photocatalytic properties (decomposition of methyl orange and bacteria) of multilayer nanocomposite films were investigated. XPS results indicated that the intensities of titanium and sulfur peaks increased with the LBL deposition process. A linear increase in absorbance at 280 nm was found by UV‐Vis spectroscopy, suggesting that stepwise multilayer growth occurs on the substrate and this deposition process is highly reproducible. AFM images showed that quartz slide was completely covered by TiO2 nanoparticles when a 10‐bilayer multilayer film was formed. The decomposition efficiency of methyl orange by TiO2/LS multilayer films under the same UV irradiation time increased linearly with the number of TiO2 layers, and the results of decomposition of bacteria under UV irradiation showed that TiO2/LS multilayer nanocomposite films exhibited excellent decomposition activity of bacteria (Escherichia coil).  相似文献   

16.
We show, in this paper that multivalent ferrocyanide anions can penetrate into exponentially growing (PGA/PAH)n multilayer films whatever the nature of the last deposited layer. These ions are not able to diffuse out of the film when it is brought in contact with a pure buffer solution. However, the contact of this film with a poly(allylamine) (PAH) or a poly(L-glutamic acid) (PGA) solution leads to the release of ferrocyanide ions from the multilayer. It is shown that the release of ferrocyanide anions, when the film is in contact with a PGA solution, is due to the diffusion of the PGA chains into the film so that an exchange between ferrocyanide ions and PGA chains takes place inside the film. On the other hand, PAH chains do not diffuse into PGA/PAH multilayers. When the film is then brought in contact with a PAH solution, the PAH chains from the solution are expected to strongly interact with the ferrocyanide ions and thus induce a diffusion mechanism of the multivalent anions out of the film, the film/solution interface playing the role of a sink for these ions. This work thus shows that interactions between multivalent ions and exponentially growing films are much more complex than expected at first sight and that polyelectrolyte multilayers must be seen as dynamic entities in which diffusion and exchange processes can take place.  相似文献   

17.
This paper describes the buildup of hydrogen-bonding-directed poly(4-vinylpyridine)/poly(4-vinylphenol) (PVPy/PVPh) multilayer film that was fabricated by layer-by-layer (LbL) assembly of PVPy and PVPh from an ethanol solution. UV-visible spectroscopy and Fourier transform infrared (FT-IR) spectroscopy revealed a uniform deposition process. The interaction between PVPy and PVPh was identified as hydrogen bonding through FT-IR spectroscopy and temperature-dependent IR spectral changes of the hydrogen-bonded multilayer. Notably, we discussed the effect of solvent conditions on the growth of PVPy/PVPh multilayer films monitored by UV-visible spectroscopy. It was found that increasing the ratio of N,N-dimethylformamide (DMF) in the mixed ethanol/DMF solvents resulted in a marked decrease of the amount of polymers adsorbed, which was attributed to the increased polarity of the adsorption solutions. Furthermore, the solvent stability of PVPy/PVPh multilayer film in mixed ethanol/DMF solvents with different DMF ratios was also investigated. As a result, a new method for tuning the structure of hydrogen-bonding-directed multilayer film was developed.  相似文献   

18.
The electro-optical behavior of a multilayer constructed via layer-by-layer deposition of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) onto ellipsoidal β-FeOOH particles is examined using electric light scattering method. For fully charged polymers (at pH 4.5), the electro-optical effect is found to increase with polyelectrolyte layer number, showing a tendency to saturation in the linear growth regime. The effect is greater and of lower frequency of relaxation for the films ending with PAH in comparison to those with top PSS layer. Evidence is given that polarization of “condensed” counterions along the chains of the last-adsorbed polymer is mainly responsible for the observed electro-optical behavior of the polyelectrolyte multilayer. Although incorporation of “condensed” small ions into the film bulk seems probable for the PSS/PAH multilayer, their participation in the electro-optical effect is found negligible. The structural changes in the PSS/PAH multilayer due to the PAH deprotonation at pH 7.5 and the corresponding changes in the electro-optical effect confirm the key role of the last-adsorbed polymer for the behavior of the entire PSS/PAH film.  相似文献   

19.
An efficient method for characterizing wetting properties of heterogeneous surfaces produced by sequential adsorption of polyelectrolytes was developed. Three types of polyelectrolytes were used: polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), both of a cationic type, and polysodium 4-styrenesulfonate (PSS), of an anionic type. Multilayer films were prepared by 'layer-by-layer' (LbL) deposition technique. Natural ruby mica, glass, titanium foil and silicon wafers were used as the support material for PE films. Wetting of polyelectrolyte films was determined experimentally by contact angle measurements, using technique of direct image analysis of shape of sessile drops. Periodic oscillations in contact angle values were observed for multilayers terminated by polycation and polyanion, respectively, and the variations in contact angle values strongly depended on the conditions of adsorption and multilayer treatment after deposition. Therefore, the influence of ionic strength of polyelectrolyte solution used for deposition on wetting of multilayer films was considered and also the effect of conditioning in different environments was investigated. It is usually assumed that film properties and stability strongly depend on the first layer which is used to anchor a multilayer at the surface of support material. To investigate influence of the first layer, PAH/PSS films were compared with more complex ones having PEI as the first layer with a sequence of PSS/PAH deposited on top of it.  相似文献   

20.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号