首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oxidative induction time (OIT), constant temperature stability (CTS) and isothermal crystallization are examples of isothermal time-to-event (TTE) measurements obtained using differential scanning calorimetry. In TTE experiments, a test specimen is heated/cooled at a constant rate from the setup temperature to an isothermal test temperature. Once the test temperature is achieved, a clock is started and the time to the thermal event (e.g., onset to oxidation, thermal decomposition or crystallization exotherm peak) is measured. Such TTE values may be used to rank stability of the material at the test temperature. Some portion of the reaction of interest, however, takes place during the pre-isothermal period as the test specimen approaches the test temperature. This amount of reaction is unmeasured and represents a bias in the resultant TTE value. An equation has been derived and numerically integrated to estimate this bias. This approach shows that the bias is dependent upon the activation energy of the test reaction, the heating/cooling rate used and the temperature range between the melting temperature and the test temperature. For commonly used heating rates, the bias for OIT and CTS tests is small. Further, the myth that isothermal crystallization kinetics determinations required high cooling rates is dispelled with the bias of less than 0.9 min resulting from heating rates as low as 10°C min–1. Knowledge of magnitude of this bias permits the selection of experimental conditions without the expense of high heating/cooling rate apparatus or extra cost cooling accessories.  相似文献   

2.
The β-carbolines, mainly including harman and norharman, are a group of naturally occurring, plant-derived alkaloids, and are also considered as nonpolar heterocyclic aromatic amines. Sesame seed oils contain a high level of β-carbolines (harman and norharman). In China, sesame seed oil blends are one of the most popular types of vegetable oils blends, which can be used as cooking oils or frying oils. Thus, it is meaningful to investigate the degradation of β-carbolines (harman and norharman) in sesame seed oil blends as frying oils during heating. In this work, the loss of harman and norharman in different types of sesame seed oil blends have been investigated. The results showed that the degradation of harman and norharman were dependent both on the type of oil blends, heating temperature and time. Harman and norharman were more degraded during heating (150 °C, 180 °C) in oleic acid-rich oil blends compared to polyunsaturated acid-rich oil blends. Mechanistic investigation suggested that the reduction in harman and norharman in oil blends during heating was mainly due to the oxidative degradation reaction between β-carbolines and lipid oxidation products. Therefore, the contents of β-carbolines (harman and norharman) in sesame seed oil blends when used as frying oils and heated can be decreased with prolonged cooking time.  相似文献   

3.
The use of adequate thermal energy storage (TES) systems is an efficient way to achieve thermal comfort in buildings reducing the cooling and heating demand. Besides, deploy phase change materials (PCM) to meet and enhance the TES needs is highly effective and widely studied. In this paper, a study of the degradation of two fatty acids is presented, capric and myristic acids, in order to evaluate whether their thermo-physical properties are affected throughout time during service. This was carried out by means of two different types of thermal treatments: degradation at constant temperature (thermal stability test), 60 °C during 100 h and 500 h, and degradation with heating and cooling cycling (thermal cycling stability), between a temperature range from 15 °C to 70 °C with 0.5 °C/min ramp during 500 and 1000 cycles. Despite no significant changes were measured for myristic acid, experimental results revealed a decrease of melting enthalpy of 6.6% in capric acid thermally treated for 500 h. Evidences of chemical degradation were found that might explain the decrease in thermophysical properties during use.  相似文献   

4.
Flaxseed oil is rich in the alpha-linolenic acid. The effect of heating on the thermal properties of flaxseed oil extracted from flax seeds has been investigated. The flaxseed oils were heated at a certain temperature (75, 105, and 135 °C, respectively) for 48 h. The melting curve (from ?75 to 100 °C) of flaxseed oil was determined by differential scanning calorimetry (DSC) at intervals of 4 h. Three DSC parameters of exothermic event and endothermic event, namely, peak temperature (T peak), enthalpy, and temperature range were determined. The initial flaxseed oil exhibited an exothermic peak, two endothermic peaks, and two endothermic shoulders between ?68 and ?5 °C in the melting profile. Heating temperature had a significant influence on the oxidative deterioration of flaxseed oil. The melting curve and parameters of flaxseed oil were almost not changed when flaxseed oil was heated at 75 °C. However, the endothermic peaks of melting curve decreased dramatically with the increasing of heating time when heating temperature was above 105 °C. There is almost no change of melting heat flow of flaxseed oil when heating time exceeded 32 h at 135 °C. The preliminary results suggest that the DSC melting profile can be used as a fast and direct way to assess the deterioration degree of flaxseed oil.  相似文献   

5.
Peanut oil is favored by consumers due to its rich nutritional value and unique flavor. This study used headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS) to examine the differences in the peanut oil aroma on the basis of variety, roasting temperatures, and pressing components. The results revealed that the optimal conditions for extracting peanut oil were achieved through the use of 50/30 μm DVB/CAR/PDMS fibers at 60 °C for 50 min. The primary compounds present in peanut oil were pyrazines. When peanuts were roasted, the temperature raised from 120 °C to 140 °C and the content of aldehydes in peanut oil increased; however, the content of aldehydes in No. 9 oil at 160 °C decreased. The components of peanut shell oil varied depending on the peanut variety. The most marked difference was observed in terms of the main compound at the two roasting temperatures. This compound was a pyrazine, and the content increased with the roasting temperature in hekei oils. When the roasting temperature was lower, No. 9 oil contained more fatty acid oxidation products such as hexanal, heptanal, and nonanal. When the roasting temperature increased, No. 9 oil contained more furfural and 5-methylfurfural. Heren oil was easier to oxidize and produced nonanal that possessed a fatty aroma.  相似文献   

6.
The influence of melting temperature and time on the thermal behaviour of poly(l-lactic acid) (PLLA) was studied with differential scanning calorimetry (DSC). Different melting conditions were investigated at temperature ranging from 200 to 210 °C, and for time from 2 to 20 min. For lower-molecular-weight PLLA, a single exothermic peak could be observed at cooling rate of 2 °C/min, after melted at different conditions. The obtained peak temperature and degrees of crystallinity dramatically increased with an increase of melting temperature or time. During subsequent heating scans, double melting peaks could be observed, which were significantly affected by prior melting conditions. The degradation of this material in the melt and the melt/re-crystallization mechanism might be responsible for the observations above. Apart from double melting, double cold crystallization peaks were observed during heating traces for this material after fast cooling (20 °C/min) from the melt. Prior melting conditions could significantly influence the cold crystallization behaviour. The competition between the crystallization from the nuclei remained after cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks. Additionally, the influence of melting conditions on the thermal behaviour of PLLA was dependent on the initial molecular weight.  相似文献   

7.
Wild olive trees have important potential, but, to date, the oil from wild olives has not been studied significantly, especially from an analytical point of view. In Spain, the wild olive tree is called “Acebuche” and its fruit “Acebuchina”. The objective of this work is to optimize the olive oil production process from the Acebuchina cultivar and characterize the oil, which could be marketed as healthy and functional food. A Box–Behnken experimental design with five central points was used, along with the Response Surface Methodology to obtain a mathematical experimental model. The oils from the Acebuchina cultivar meet the requirements for human consumption and have a good balance of fatty acids. In addition, the oils are rich in antioxidants and volatile compounds. The highest extraction yield, 12.0 g oil/100 g paste, was obtained at 90.0 min and the highest yield of phenolic compounds, 870.0 mg/kg, was achieved at 40.0 °C, and 90.0 min; but the maximum content of volatile compounds, 26.9 mg/kg, was obtained at 20 °C and 30.0 min. The oil yield is lower than that of commercial cultivars, but the contents of volatile and phenolic compounds is higher.  相似文献   

8.
Paulownia bark is mostly utilized jointly with wood, but the possibility of a separate valorization through the pressurized extraction of bark bioactives has been assessed. Subcritical water extraction and supercritical CO2 extraction are green technologies allowing shorter times than conventional solvent extraction under atmospheric shaken conditions. Subcritical water extraction was carried out at temperatures ranging from 140 to 240 °C and supercritical CO2 extraction was performed at different pressures (10, 20 and 30 MPa), temperatures (35, 45 and 55 °C) and ethanol concentrations (0, 10 and 15% (w/w)). Subcritical water extraction under a non-isothermal operation during heating up to 160 °C (19 min) provided extraction yields up to 30%, and the extracts contained up to 7% total phenolics with an ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging capacity equivalent to 35% the activity of Trolox, whereas at 240 °C, the yield decreased to 20%, but the phenolic content reached 21%, and the antiradical activity was equivalent to 85% of Trolox. Supercritical CO2 extraction at 30 MPa, 45 °C and 30 min reached a global yield of 2% after 180 min of extraction, but the product showed very low antiradical capacity. Gallic acid, vanillic acid, vanillin and apigenin were the major phenolic compounds found in the extracts.  相似文献   

9.
Hydrothermal pretreatment (HP) is an eco-friendly process for deconstructing lignocellulosic biomass (LCB) that plays a key role in ensuring the profitability of producing biofuels or bioproducts in a biorefinery. At the laboratory scale, HP is usually carried out under non-isothermal regimes with poor temperature control. In contrast, HP is usually carried out under isothermal conditions at the commercial scale. Consequently, significant discrepancies in the values of polysaccharide releases are found in the literature. Therefore, laboratory-scale HP data are not trustworthy if scale-up or retrofitting of HP at larger scales is required. This contribution presents the results of laboratory-scale batch HP for wheat straw in terms of xylan and glucan release that were obtained with rigorous temperature control under isothermal conditions during the reaction stage. The heating and cooling stages were carried out with fast rates (43 and −40 °C/min, respectively), minimizing non-isothermal reaction periods. Therefore, the polysaccharide release results can be associated exclusively with the isothermic reaction stage and can be considered as a reliable source of information for HP at commercial scales. The highest amount of xylan release was 4.8 g/L or 43% obtained at 180 °C and 20 min, while the glucan release exhibited a maximum of 1.2 g/L or 5.5%. at 160 °C/180 °C and 30 min.  相似文献   

10.
A copolyester was synthesized and characterized to have 78.6 mol% ethylene succinate unit and 21.4 mol% trimethylene succinate unit by using NMR. The value of the random parameter is 0.97 that can be considered to be a random copolymer. The melting behavior after isothermal crystallization was studied using differential scanning calorimeter by varying the crystallization temperature, the heating rate and the crystallization time. Triple melting peaks were observed. The melting behavior indicates that the upper melting peaks are primarily due to the melting of lamellar crystals with different stability. The Hoffman-Weeks linear plot gives an equilibrium melting temperature of 94.0 °C. The spherulite growth of this copolyester from 72 °C to 30 or 15 °C at a cooling rate of 1 or 2 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera and a DVD recorder. These experiments including the self-nucleation pretreatment took 72 min and 60 min, respectively. Continuous growth rates between melting and glass transition temperatures can be obtained after curve-fitting procedures. These data fit well with those data points measured in the isothermal experiments, which is time consuming. These isothermal and continuous data were separately analyzed with the Hoffman and Lauritzen theory. A regime II-III transition was detected at about 51.5 ± 0.1 °C.  相似文献   

11.
In this work, we propose the utilization of scCO2 to impregnate ibuprofen into the mcl-PHA matrix produced by Pseudomonas chlororaphis subs. aurantiaca (DSM 19603). The biopolymer has adhesive properties, is biocompatible and has a melting temperature of 45 °C. Several conditions, namely, pressure (15 and 20 MPa) and impregnation time (30 min, 1 h and 3 h) were tested. The highest ibuprofen content (90.8 ± 6.5 mg of ibuprofen/gPHA) was obtained at 20 MPa and 40 °C, for 1 h, with an impregnation rate of 89 mg/(g·h). The processed mcl-PHA samples suffered a plasticization, as shown by the decrease of 6.5 °C in the Tg, at 20 MPa. The polymer’s crystallinity was also affected concomitantly with the matrices’ ibuprofen content. For all the impregnation conditions tested the release of ibuprofen from the biopolymer followed a type II release profile. This study has demonstrated that the mcl-PHA produced by P. chlororaphis has a great potential for the development of novel topical drug delivery systems.  相似文献   

12.
Dilute dispersions of poly(lauryl methacrylate)–poly(benzyl methacrylate) (PLMA–PBzMA) diblock copolymer spheres (a.k.a. micelles) of differing mean particle diameter were mixed and thermally annealed at 150 °C to produce spherical nanoparticles of intermediate size. The two initial dispersions were prepared via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate in n-dodecane at 90 °C. Systematic variation of the mean degree of polymerization of the core-forming PBzMA block enabled control over the mean particle diameter: small-angle X-ray scattering (SAXS) analysis indicated that PLMA39–PBzMA97 and PLMA39–PBzMA294 formed well-defined, non-interacting spheres at 25 °C with core diameters of 21 ± 2 nm and 48 ± 5 nm, respectively. When heated separately, both types of nanoparticles regained their original dimensions during a 25–150–25 °C thermal cycle. However, the cores of the smaller nanoparticles became appreciably solvated when annealed at 150 °C, whereas the larger nanoparticles remained virtually non-solvated at this temperature. Moreover, heating caused a significant reduction in mean aggregation number for the PLMA39–PBzMA97 nanoparticles, suggesting their partial dissociation at 150 °C. Binary mixtures of PLMA39–PBzMA97 and PLMA39–PBzMA294 nanoparticles were then studied over a wide range of compositions. For example, annealing a 1.0% w/w equivolume binary mixture led to the formation of a single population of spheres of intermediate mean diameter (36 ± 4 nm). Thus we hypothesize that the individual PLMA39–PBzMA97 chains interact with the larger PLMA39–PBzMA294 nanoparticles to form the hybrid nanoparticles. Time-resolved SAXS studies confirm that the evolution in copolymer morphology occurs on relatively short time scales (within 20 min at 150 °C) and involves weakly anisotropic intermediate species. Moreover, weakly anisotropic nanoparticles can be obtained as a final copolymer morphology over a restricted range of compositions (e.g. for PLMA39–PBzMA97 volume fractions of 0.20–0.35) when heating dilute dispersions of such binary nanoparticle mixtures up to 150 °C. A mechanism involving both chain expulsion/insertion and micelle fusion/fission is proposed to account for these unexpected observations.

Dilute dispersions of poly(lauryl methacrylate)-poly(benzyl methacrylate) diblock copolymer spheres of differing mean diameter are mixed and thermally annealed at 150 °C to produce either spherical or non-spherical nanoparticles of intermediate size.  相似文献   

13.
Because of the health problems associated with trans fatty acids (TFAs) in hydrogenated oil, the objective of this research was to accelerate crystallization of the trans-free unhydrogenated palm oil (UPO) as a hydrogenated palm oil (HPO) substitute. Crystallization thermograms of UPO blended with icing sugar (1:1.5 mass ratio) from different initial heating temperatures were measured by differential scanning calorimetry (DSC), to study its effects on crystallization rate. DSC thermograms of UPO and HPO cooled from two melt states (the complete melting state 80 °C and the incomplete state 40 °C) were also compared. Crystallization rates from temperatures above the melting point (m.p.) were faster than those below the top limit of the m.p. The reason may be that a higher initial heating temperature induced a completely melted state and thus a larger driving force toward the solid phase. Raising the processing temperature to 80 °C, UPO may have a crystallization rate the same as, if not faster than, HPO. This study provides a new way to accelerate the crystallization of the trans-free UPO, making HPO a realistic substitute in the food industry.  相似文献   

14.
This research aimed to reduce the variability on the data obtained from differential scanning calorimetric (DSC) analysis of the isothermal crystallization kinetics of cocoa butter.

To enable transformation of the DSC crystallization peak to a sigmoid crystallization curve, the DSC peak area has to be integrated. Usually, the start and end points of the crystallization peak are determined visually. The result of this visual determination appeared to be very much dependent on the operator, but also differed considerably when the same operator performed the integration several times. By proposing an objective calculation algorithm to determine the start and end points of integration, the variability caused by the operator during the integration procedure could be eliminated. Furthermore, sample preparation and the DSC heating protocol to melt the sample prior to crystallization were studied. Three heating protocols (65 °C for 15 min, 65 °C for 30 min and 80 °C for 15 min) were compared and it was shown that holding at 65 °C for 15 min was sufficient to eliminate any influence of sample history. Two different sample preparation procedures were compared and it appeared that a change in sample preparation procedure had a significant influence on the measured crystallization process. It is thus important to keep this method constant to eliminate the variability caused by it.  相似文献   


15.
This work is concerned with the melting behaviour and accuracy of differential scanning calorimeter (DSC) analyses of poly(3-hydroxybutyrate) (PHB), a semi-crystalline thermoplastic polymer completely biodegradable and biocompatible, and obtained from renewable resources. Melting parameters of PHB were determined for the first fusion event applying standard experimental procedures for thermal analysis, using heating rates ranging between 1 °C/min and 20 °C/min. The analyses of DSC energy flow scans showed a complex melting peak that may be resolved into three elementary peaks having different intensities at different melting temperatures. Peak temperatures depend on heating rate, while the total crystallinity detected was independent of the rate. A study of 24 DSC runs showed good temperature reproducibility (±0.5 °C), but poor reproducibility of mass crystallinity (±10%).  相似文献   

16.
The melting points of anhydrous 1-O-α- -glucopyranosyl- -mannitol, 1-O-α- -glucopyranosyl- -mannitol dihydrate and a new compound, 1-O-α- -glucopyranosyl- -mannitol-ethanol (2/1) were determined using differential scanning calorimetry. The melting onset values were 169.2 (3), 104.3 (18) and 158.7 (9), respectively, and the melting peak values were 171.4 (5), 107.9 (15) and 160.1 (6), respectively. 1-O-α- -glucopyranosyl- -mannitol dihydrate and 1-O-α- -glucopyranosyl- -mannitol-ethanol (2/1) decompose to anhydrous form when heated at slow heating rates.According to TG-FTIR measurements, 1-O-α- -glucopyranosyl- -mannitol-ethanol (2/1) lost its ethanol in the 110–190°C range, and 1-O-α- -glucopyranosyl- -mannitol dihydrate lost its crystal water in the 60–210°C range. After removal of ethanol and crystal water, both decomposed in air totally as carbohydrates usually do, forming lower hydrocarbons with OH-groups, CO2 and H2O.  相似文献   

17.
Ultrasound-assisted extraction (UAE) was used to extract carotenoids from the carrot pomace. To investigate the effect of independent variables on the UAE, the response surface methodology (RSM) with central-composite design (CCD) was employed. The study was conducted with three independent variables including extraction time (min), temperature (°C), and ethanol concentration (%). The results showed that the optimal conditions for UAE were achieved with an extraction time of 17 min, temperature of 32 °C, and ethanol concentration of 51% of total carotenoids (31.82 ± 0.55); extraction time of 16 min, temperature of 29 °C, and ethanol concentration of 59% for a combination of β-carotene (14.89 ± 0.40), lutein (5.77 ± 0.19), and lycopene (2.65 ± 0.12). The non-significant (p > 0.05) correlation under optimal extraction conditions between predicted and experimental values suggested that UAE is the more productive process than conventional techniques for the extraction of carotenoids from the carrot pomace.  相似文献   

18.
The reactivity of [NaL·ClO2] cluster anions (L = ClOx; x = 0–3) with sulphur dioxide has been investigated in the gas phase by ion–molecule reaction experiments (IMR) performed in an in-house modified Ion Trap mass spectrometer (IT-MS). The kinetic analysis revealed that SO2 is efficiently oxidised by oxygen-atom (OAT), oxygen-ion (OIT) and double oxygen transfer (DOT) reactions. The main difference from the previously investigated free reactive ClO2 is the occurrence of intracluster OIT and DOT processes, which are mediated by the different ligands of the chlorite anion. This gas-phase study highlights the importance of studying the intrinsic properties of simple reacting species, with the aim of elucidating the elementary steps of complex processes occurring in solution, such as the oxidation of sulphur dioxide.  相似文献   

19.
The way to measure quantitatively full dissolution and crystallization of polyamides in water up to 200 °C and above by DSC is described. Stainless-steel high-pressure pans enable research on fully dissolving polyamides in water under vapor pressure. The results show clearly that polyamide 6 (PA6) is soluble in water under vapor pressure in the whole concentration range and that water acts as a crystallization and melting point suppressor. The maximum temperature depression is approximately 60 °C. This depression of the transitions is independent of concentration over a large range (10-70 mass% PA6 in water). When PA6 dissolves in water during heating, the polymer often sets to the sides of the DSC sample pan. Because of this the contact between the sample and the bottom of the pan reduces during measurement and therefore DSC heating curves are frequently curved. Adding steel wool to these stainless-steel high-pressure pans improves the measurements by increasing the thermal conductivity between the sample and pan bottom, and as a result the DSC curves become less curved. The interpretation of the measurements improves and the possibility of reproducible peak area calculations also in heating comes in sight.  相似文献   

20.
This study aims to determine the effect of fast cooling (quenching) on thermal properties, mechanical strength, morphology and size of the AgNWs. The synthesis of AgNWs was carried out at three different quenching-medium temperatures as follows: at 27 °C (ambient temperature), 0 °C (on ice), and −80 °C (in dry ice) using the polyol method at 130 °C. Furthermore, the AgNWs were sonified for 45 min to determine their mechanical strength. Scanning electron microscopy analysis showed that the quenched AgNWs had decreased significantly; at 27 °C, the AgNWs experienced a change in length from (40 ± 10) to (21 ± 6) µm, at 0 °C from (37 ± 8) to (24 ± 8) µm, and at −80 °C from (34 ± 9) to (29 ± 1) µm. The opposite occurred for their diameter with an increased quenching temperature: at 27 °C from (200 ± 10) to (210 ± 10) nm, at 0 °C from (224 ± 4) to (239 ± 8) nm, and at −80 °C from (253 ± 6) to (270 ± 10) nm. The lower the temperature of the quenching medium, the shorter the length and the higher the mechanical strength of AgNWs. The UV-Vis spectra of the AgNWs showed peak absorbances at 350 and 411 to 425 nm. Thermogravimetric analysis showed that AgNWs quenched at −80 °C have better thermal stability as their mass loss was only 2.88%, while at the quenching temperatures of 27 °C and 0 °C the mass loss was of 8.73% and 4.17%, respectively. The resulting AgNWs will then be applied to manufacture transparent conductive electrodes (TCEs) for optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号