首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Stereo particle image velocimetry measurements focus on the flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor. Unobstructed optical access to the sample area is achieved by matching the optical refractive index of the transparent pump with that of the fluid. Data obtained in closely spaced planes enable us to reconstruct the 3D TLV structure, including all components of the mean vorticity and strain-rate tensor along with the Reynolds stresses and associated turbulence production rates. The flow in the tip region is highly three-dimensional, and the characteristics of the TLV and leakage flow vary significantly along the blade tip chordwise direction. The TLV starts to roll up along the suction side tip corner of the blade, and it propagates within the passage toward the pressure side of the neighboring blade. A shear layer with increasing length connects the TLV to the blade tip and initially feeds vorticity into it. During initial rollup, the TLV involves entrainment of a few vortex filaments with predominantly circumferential vorticity from the blade tip. Being shed from the blade, these filaments also have high circumferential velocity and appear as swirling jets. The circumferential velocity in the TLV core is also substantially higher than that in the surrounding passage flow, but the velocity peak does not coincide with the point of maximum vorticity. When entrainment of filaments stops in the aft part of the passage, newly forming filaments wrap around the core in helical trajectories. In ensemble-averaged data, these filaments generate a vortical region that surrounds the TLV with vorticity that is perpendicular to that in the vortex core. Turbulence within the TLV is highly anisotropic and spatially non-uniform. Trends can be traced to high turbulent kinetic energy and turbulent shear stresses, e.g., in the shear layer containing the vortex filaments and the contraction region situated along the line where the leakage backflow meets the throughflow, causing separation of the boundary layer at the pump casing. Upon exposure to adverse pressure gradients in the aft part of the passage, at 0.65–0.7 chord fraction in the present conditions, the TLV bursts into a broad turbulent array of widely distributed vortex filaments.  相似文献   

2.
The effect of a casing fence on the tip-leakage flow of an axial flow fan is investigated using large eddy simulation. A fence is attached on the shroud near the trailing edge of an axial flow fan used in an outdoor unit of air conditioner. The Reynolds number is 547,000 based on the blade tip radius and tip velocity. At the design condition, the fan efficiency is increased by the casing fence. The roles of the fence are to block backward leakage flows near the shroud and to weaken the movement of the tip-leakage vortex (TLV) in the azimuthal direction. Also, the fence reduces the double-leakage tip-clearance flow generated at the aft part of the blade tip due to the TLV-blade interaction, reducing the strength of the tip-separation vortex. Consequently, the tip leakage and total pressure losses are reduced, and the efficiency is increased. The pressure fluctuations on the aft part of the blade tip of the pressure surface caused by the TLV-blade interaction are also significantly reduced by the fence, indicating reduction of the noise source. According to the interaction between the fence and backward leakage flow induced by the TLV, the fence significantly and slightly increases the aerodynamic performances at the design and peak efficiency conditions, respectively, but reduces them at an overflow condition.  相似文献   

3.
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.  相似文献   

4.
Mind the gap: a new insight into the tip leakage vortex using stereo-PIV   总被引:2,自引:0,他引:2  
The tip leakage vortex (TLV), which develops in the clearance between the rotor and the stator of axial hydro turbines, has been studied for decades. Yet, many associated phenomena are still not understood. For instance, it remains unclear how the clearance size is related to the occurrence of cavitation in the vortex, which can lead to severe erosion. Experiments are here carried out on the influence of the clearance size on the tip vortex structure in a simplified case study. A NACA0009 hydrofoil is used as a generic blade in a water tunnel while the clearance between the blade tip and the wall is varied. The 3D velocity fields are measured using Stereo Particle Image Velocimetry (SPIV) in three planes located downstream of the hydrofoil for different values of the upstream velocity, the incidence angle and a large number of tip clearances. The influence of the flow conditions on the structure of the TLV is described through changes in the vortex intensity, core axial flow, vortex center position and wandering motion amplitude. Moreover, high-speed visualizations are used to highlight the vortex core trajectory and clearance flow alteration, turning into a wall jet as the tip clearance is reduced. The measurements clearly reveal the existence of a specific tip clearance for which the vortex strength is maximum and most prone to generating cavitation.  相似文献   

5.
In this paper, the effects of multiple dielectric barrier discharge (DBD) plasma actuators on the leakage flow structures and loss conditions have been numerically studied in an axial turbine cascade. Kriging surrogate model is adopted to obtain the optimal cases. The physical mechanism of flow structures inside the gap that control leakage flow is presented, which is obtained by analyzing the flow topology, the evolution of the flow structures and its influence on the secondary velocity and loss conditions in the passage as well. The results show that the induced vortex caused by DBD actuators can change the leakage flow direction inside the tip gap and make the separation bubble break earlier, leading to a new type of the flow pattern. When the actuators are applied, the speed of leakage flow is significantly reduced and the angle between leakage flow and main flow has an obviously diminution, causing the reduction of mixing losses in the passage compared with the Baseline case. Furthermore, the comparison of secondary velocity shows that the tip leakage vortex (TLV) approaches the suction surface, resulting in reduced affected area and weakened loss strength. Plasma actuators can diminish the loss coefficient in both TLV and passage vortex near the casing (PVC) zones. The actuators arranged near the trailing edge mainly affect the strength of TLV, while the actuators in the leading edge area contribute to the loss reduction in the zone of PVC.  相似文献   

6.
高远  黄彪  吴钦  王国玉 《力学学报》2015,47(6):1009-1016
空化是发生在水力机械内部的一种水动力现象,其发展具有显著的非定常特性.空化流动中空穴的脱落以及溃灭会诱发结构振动,对水力机械的效率、噪声、安全性等造成影响. 研究空化流动中结构的振动特性具有重要的工程意义. 采用实验的方法研究了绕NACA66 水翼空化流动的空穴形态和水翼振动特性. 实验在一闭式空化水洞中进行. 采用高速摄像技术观测不同空化阶段的空穴形态,应用多普勒激光测振仪测量水翼的振动速度,并通过一套同步系统实现了高速相机和多普勒激光测振仪的同步触发和测量. 采用小波分析方法对不同空化阶段下的空穴形态和水翼振动数据在时域和频域中的特性进行了分析.对云状空化阶段的同步测量结果进行了研究,分析了振动与空穴发展过程的联系. 结果表明,随着空化数的降低,流场经历了无空化、初生空化、片状空化和云状空化4个阶段,水翼的振动强度呈逐渐增大趋势. 在片状空化和云状空化阶段,空穴脱落导致水翼振动,诱发的振动频率与空穴脱落频率相同. 对于云状空化,在附着型空穴生长阶段水翼发生高频小幅度振动,在空穴脉动和断裂脱落期间水翼表现为低频大幅振动.   相似文献   

7.
收缩扩张管内液氮空化流动演化过程试验研究   总被引:1,自引:1,他引:0  
本文基于低温空化试验平台研究了收缩扩张流道内液氮非定常空化流动的演化过程. 试验采用高时空分辨率的高速摄像机对77 K液氮在不同空化数σ下空穴结构的演变进行了精细化的分析和研究. 利用试验得到的空穴长度和面积等数据, 定量分析了液氮空化流动的非定常特性与时空演变规律. 研究结果表明: (1)在相似来流速度和温度条件下, 随着空化数的减小, 液氮空化流动呈现四种典型流型, 空穴长度在2.5 h以内为初生空化、空穴长度在2.5 h ~ 7.5 h之间为片状空化、空穴长度在7.5 h ~ 15 h之间为大尺度云状空化, 空穴长度超过15 h为双云状空化, 且在大尺度云状空化和双云状空化阶段均捕捉到了回射流现象; (2)液氮空化流动从初生空化到双云状空化, 脱落空穴的尺度逐渐增大, 空穴面积脉动的幅值和准周期均有所增加. 同时, 在大尺度云状空化与双云状空化阶段, 喉口处堵塞效应对空化流动的影响显著增强; (3)相比于初生空化, 片状空化、大尺度云状空化以及双云状空化中脱落空穴的移动距离依次增加了0.97倍、2.65倍与2.68倍, 溃灭时间依次增加了1.18倍、3.59倍与4.47倍, 但溃灭速度依次减小了0.10倍、0.20倍与0.30倍. 除此之外, 对于双云状空化阶段, 存在两种显著不同的脱落空穴演化过程.   相似文献   

8.
An experimental analysis using three-dimensional laser Dopplervelocimetery (LDV) measurements and computational analysis usingthe Reynolds stress model of the commercial code, FLUENT, wereconducted to give a clear understanding on the structure of thetip leakage flow in a forward-swept axial-flow fan operating atthe peak efficiency condition, and to emphasize the necessity ofusing an anisotropic turbulence model for the accurate predictionof the tip leakage vortex. The rolling-up of the tip leakage flowwas initiated near the position of the maximum static pressuredifference, which was located at approximately 12% axial tipchord downstream from the leading edge of the blade, and developedalong the centerline of the pressure trough on the casing. Areverse flow between the blade tip and the casing due to the tipleakage vortex acted as a blockage on the through-flow. As aresult, high momentum flux was observed below the tip leakagevortex. As the tip leakage vortex proceeded to the aft part of theblade passage, the strength of the tip leakage vortex decreaseddue to the strong interaction with the through-flow and the casingboundary layer, and the diffusion of the tip leakage vortex byhigh turbulence. Through the comparative study of turbulencemodels, it was clearly shown that an anisotropic turbulence model,e.g., Reynolds stress model, should be used to predict reasonablyan anisotropic nature of the turbulent flow fields inside the tipleakage vortex. In comparison with LDV measurement data, thecomputed results predicted the complex viscous flow patternsinside the tip region in a reliable level.  相似文献   

9.
Cavitating turbulent flow around hydrofoils was simulated using the Partially-Averaged Navier–Stokes (PANS) method and a mass transfer cavitation model with the maximum density ratio (ρl/ρv,clip) effect between the liquid and the vapor. The predicted cavity length and thickness of stable cavities as well as the pressure distribution along the suction surface of a NACA66(MOD) hydrofoil compare well with experimental data when using the actual maximum density ratio (ρl/ρv,clip = 43391) at room temperature. The unsteady cavitation patterns and their evolution around a Delft twisted hydrofoil were then simulated. The numerical results indicate that the cavity volume fluctuates dramatically as the cavitating flow develops with cavity growth, destabilization, and collapse. The predicted three dimensional cavity structures due to the variation of attack angle in the span-wise direction and the shedding cycle as well as its frequency agree fairly well with experimental observations. The distinct side-lobes of the attached cavity and the shedding U-shaped horse-shoe vortex are well captured. Furthermore, it is shown that the shedding horse-shoe vortex includes a primary U-shaped vapor cloud and two secondary U-shaped vapor clouds originating from the primary shedding at the cavity center and the secondary shedding at both cavity sides. The primary shedding is related to the collision of a radially-diverging re-entrant jet and the attached cavity surface, while the secondary shedding is due to the collision of side-entrant jets and the radially-diverging re-entrant jet. The local flow fields show that the interaction between the circulating flow and the shedding vapor cloud may be the main mechanism producing the cavitating horse-shoe vortex. Two side views described by iso-surfaces of the vapor volume fraction for a 10% vapor volume, and a non-dimensional Q-criterion equal to 200 are used to illustrate the formation, roll-up and transport of the shedding horse-shoe vortex. The predicted height of the shedding horse-shoe vortex increases as the vortex moves downstream. It is shown that the shape of the horse-shoe vortex for the non-dimensional Q-criterion is more complicated than that of the 10% vapor fraction iso-surface and is more consistent with the experiments. Further, though the time-averaged lift coefficient predicted by the PANS calculation is about 12% lower than the experimental value, it is better than other predictions based on RANS solvers.  相似文献   

10.
This work numerically examines the effect of turbulent and cavitating flow on the hydroelastic response and stability of a hydrofoil. A cantilevered, rectangular, chordwise rigid hydrofoil is modeled as a 2-degrees-of-freedom structure for its spanwise bending and torsional flexibilities. The fluid flow is modeled with the incompressible, Unsteady Reynolds Averaged Navier–Stokes equations using an eddy-viscosity turbulence closure model that is corrected for the presence of cavitation, and with a transport equation based cavitation model. The results show that, in general, massive cavitation tends to: (i) reduce the mean lift, (ii) increase the mean drag, (iii) lower the mean deformations, and (iv) delay static divergence, while unsteady sheet/cloud cavitation promotes flow induced vibrations. Such vibrations and load fluctuations could be as large as (and even greater than) the mean values for cases with unsteady cavitation, so dynamic and viscous fluid–structure models are needed to simulate flexible hydrofoils in cavitating flows. In general, the flow induced vibrations, and hence the drag force, are higher with decreasing stiffness. For small leading edge partial cavitation, increasing foil flexibility increases the maximum cavity length and reduces the cavity shedding frequency; however, the influence of foil flexibility is limited for cases where the maximum cavity length is near or beyond the foil trailing edge, because of the relocation of the center of pressure at the elastic axis, near the mid-chord. The results show that the mean deformations are generally limited by stall, and by the quasi-steady linear theory predictions at the fully-wetted and supercavitating limits. Furthermore, frequency focusing can occur when the cavity shedding frequency is near the fundamental system resonance frequencies, and broadening of the frequency spectrum can occur due to excitation of the sub-harmonics and/or modulation induced by the fluctuating cavities, if the cavity shedding frequency is away from the fundamental system resonance frequencies.  相似文献   

11.
Tip leakage aerodynamics over stepped squealer tips in a turbine cascade   总被引:3,自引:0,他引:3  
Tip gap flow physics and aerodynamic loss generations for two stepped squealer tips of a “Higher Pressure-side rim and Lower Suction-side rim” (HPLS) tip and a “Lower Pressure-side rim and Higher Suction-side rim” (LPHS) tip have been investigated in a turbine cascade. For a fixed tip gap height-to-chord ratio of h/c = 2.0%, oil film flow visualizations are performed on the casing wall as well as on the cavity floor, and three-dimensional flow fields downstream of the cascade are measured with a five-hole probe. For the HPLS tip, the leakage inflow over the pressure-side rim cannot reach the suction-side rim in the upstream region due to the presence of an inlet flow intrusion, and there exists a strong near-wall flow heading toward the trailing edge all over the cavity floor. On the other hand, the LPHS tip has a mid-chord leakage flow penetration into the blade flow passage, and also provides a downstream leakage flow penetration deeper than that for the HPLS tip. Its cavity floor can be divided into a backward flow region and a wide separation bubble. Aerodynamic loss for the HPLS tip, which is nearly identical to that for the cavity squealer tip, is lower than those for the LPHS and plane tips in a considerable degree.  相似文献   

12.
为了研究云状空化阶段空穴发展和脱落的机理,采用实验的方法对绕三维水翼云状空化流动进行了研究.实验在高速水洞中进行,采用高速摄像技术研究了不同空化阶段的空穴形态,并测量了翼型所受的升阻力,并对上述数据进行了频谱分析.结果发现:在云状空化阶段,观测到空穴的产生-发展-脱落-溃灭的准周期性变化;并捕捉到空泡脱落时附着在翼型前...  相似文献   

13.
Experiments on unsteady cavitation   总被引:2,自引:0,他引:2  
 The unsteady behaviour of cloud cavitation is obviously influenced by its internal flow pattern. The main purpose of this work is to investigate such a two phase flow during a cavitation cycle. The tests are carried out with a convergent divergent nozzle. Observations are made by using a classical video set in combination with a stroboscopic light sheet. The use of a double optical probe enables void fraction and velocity to be measured inside the two phase flow structure. Data acquisition is governed by a pressure signal measured near the cavity closures to follow their evolution during the shedding process. Special care has been taken in validating the experimental techniques because they have not been used in such flows. The measurements show an extended reversed flow occurring along the solid surface. It plays a significant function in the vapour cloud shedding process. Received: 11 September 1995 / Accepted: 28 June 1996  相似文献   

14.
The paper first summarizes the forced response problem in turbomachinery and reviews various numerical methods for the simulation of unsteady flows. A particular technique, based on the linearisation of the unsteady Favre-averaged Navier-Stokes equations on three-dimensional mixed-element grids of tetrahedra, hexahedra and wedges, is described in some detail. The methodology was applied to a NGV/rotor interaction benchmark case for which detailed steady and unsteady flow measurements are available. The steady-state flow, calculated using a non-linear viscous representation, was described in detail with emphasis on features such as separation, horseshoe and passage vortices, tip leakage and shock structure since these are likely to influence the unsteady flow. The sources of unsteadiness on the rotor passage were evaluated from the steady-state solution at the NGV outlet. The disturbances were split into vortical, entropic and potential waves, the Fourier components of which were considered separately. The summation of the vortical and entropic waves was used as a rotor inlet boundary condition in order to assess the wake/rotor unsteady interaction. Similarly, potential waves were used to study the potential/rotor interaction. The results obtained from these two types of unsteady interactions were superimposed and compared with experimental data. Good qualitative and, in most cases, quantitative agreement was obtained, a finding which suggests that the unsteady flowfield generated by the relative blade motion can be considered to be a quasi-linear phenomenon for the particular HP turbine studied. Finally, the mechanisms of wake/rotor and potential/rotor interactions were studied in some detail and it was concluded that the former was strong in the crown of the blade while the latter was dominant in the leading edge region.  相似文献   

15.
The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry(PIV) were used to obtain cavitation patterns images(Prog. Aerosp. Sci. 37: 551–581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α = 8?for moderate Reynolds number of Re = 5.6 × 10~5. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil(A) and a rough hydrofoil(B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B.Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages:(1) Attached cavities developed along the surface to the trailing edge;(2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages:(1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field;(2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process;(3) Cavities grew and shed again.  相似文献   

16.
In the present study, the cavitating flows around marine propulsors have been numerically investigated by using a multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model using unstructured meshes. To handle the relative motion between the rotating rotor and the stator, an overset mesh technique was adopted. The mass transfer rate between the liquid and vapor phases was determined by Merkle’s cavitation model based on the difference between the local and vapor pressure. The calculations were made for the P4381 marine propeller with different cavitation numbers at several advancing ratios. It was shown that the vapor structure, such as cavitation size and shape, was well captured at cavitating flow conditions. It was observed that the cavitation breakdown behavior was also well captured by the present method. Good agreement was obtained between the present results and the experiment for the integrated blade loadings, such as thrust and torque. The calculations were also made for a water-jet pump configuration at several flow conditions, and the cavitation breakdown behaviors for total headrise, power and thrust were validated by comparing the results with the experiment. The blade area covered by the cavitation and the shape of tip leakage cavitation were also compared with the experiment. Reasonable agreement between the predicted results and the experiment was obtained.  相似文献   

17.
程怀玉  季斌  龙新平  槐文信 《力学学报》2021,53(5):1268-1287
利用大涡模拟方法及一个考虑气核效应的欧拉$\!-\!$拉格朗日新空化模型, 对绕NACA0009水翼叶顶间隙泄漏涡(top-leakage vortex, TLV)及其空化流动开展了高精度的模拟, 结果显示数值模拟与实验吻合较好. 在此基础上进一步讨论了不同间隙大小对TLV空化的演变行为及其发生前后TLV强度、气核分布以及切向速度分布等特征参数的变化规律, 分析了TLV空化对TLV演变行为及其特征参数的影响机制. 结果表明, 空化发生后, TLV的强度主要受片空化演变行为的影响, TLV空化对其自身强度的影响较小. 此外, 间隙越小, 片空化越不稳定, TLV的强度也会呈现相应的准周期性波动. 随着间隙的逐渐增大, 片空化强度逐渐减小, 其不稳定性也逐步减弱, TLV强度逐渐恢复至无空化时的水平, 其波动也会逐渐减小. 空化对涡心处气核分布会产生较为明显的影响, 其影响程度取决于空化发生后TLV在空间上的稳定性以及TLV空化的强度. 此外, 空化发生后, TLV半径会在一定程度上增大, 且在空化区域外围形成``类刚体旋转'的切向速度分布特性, 其形成原因主要是空化生长引起的膨胀过程以及流动的黏性作用.   相似文献   

18.
Sheet/cloud cavitation is an important topic that is a very common type of cavitation in turbo-machinery and marine propeller. Up to now we still have limited understanding of the cavitation shedding dynamics and cloud cavity formation and development. The present study used experimental and numerical studies to gain a better understanding of the complex physics involved in this problem. A series of experimental observations around hydrofoils are carried out in the cavitation tunnel of the China Ship Scientific Research Center (CSSRC) to illustrate the spatial–temporal evolution of the cloud cavity in detail. The results demonstrate that U-type flow structures are common in cloud cavities and can be divided into three stages and the closure line in a sheet cavity often has a convex–concave profile. Reentrant flows occur in the convex region with the jet direction normal to the contour edge so the shedding is mainly caused by the converging reentrant flows. Further analysis demonstrated that there was a striking difference with the cavity growth suppressed substantially in the twisted hydrofoil case if compared with straight hydrofoil and the effect of side entrant jets might make the cavity more uniform across the span. Numerical simulations were used to simulate the formation and development of the cloud cavity. The results show that the strong adverse pressure gradient in the stagnation region at the downstream end of the attached cavity forces the re-entrant flows into the vapor structure with a radially-diverging re-entrant jet and a pair of side-entrant jets, which causes the cavity shedding. Further analyzes of the local flow fields show that the interactions between the circulating flow and the shedding vapor cloud may be the main reason for the formation of the U-type cloud cavity structures.  相似文献   

19.
谢庆墨  陈亮  张桂勇  孙铁志 《力学学报》2020,52(4):1045-1054
空化是船舶和水下航行体推进器中经常发生的一种特殊流动现象,它具有强烈的非定常性,空化的发生往往会影响推进器的水动力性能和效率. 为探究绕水翼非定常空化流场结构,本文基于 Schnerr-Sauer 空化模型和 SST $k$-$\omega $ 湍流模型,开展绕二维水翼非定常空化流动数值预报与流场结构分析. 通过将数值预报的空泡形态演变和压力数据与试验结果对比,验证了建立的数值方法的有效性. 并基于动力学模态分解方法对空化流场的速度场进行模态分解,分析了各个模态的流场特征. 结果表明,第一阶模态对应频率为 0,代表平均流场;第二阶模态对应频率约为空泡脱落频率,揭示了空泡在水翼前缘周期性地生长与脱落,第三阶模态对应频率约为第二阶模态的 2 倍,揭示了两个大尺度旋涡在水翼后方存在融合行为. 第四阶模态对应频率约为第二阶模态的 3 倍,具有更高的频率,表征流场中存在一些小尺度旋涡的融合行为. 最后对不同空化数下的空化流场进行了模态分解分析,发现脱落空泡的旋涡结构随着空化数的减小而增大,第二阶模态频率随着空化数的减小而减小.   相似文献   

20.
空化是船舶和水下航行体推进器中经常发生的一种特殊流动现象,它具有强烈的非定常性,空化的发生往往会影响推进器的水动力性能和效率. 为探究绕水翼非定常空化流场结构,本文基于 Schnerr-Sauer 空化模型和 SST $k$-$\omega $ 湍流模型,开展绕二维水翼非定常空化流动数值预报与流场结构分析. 通过将数值预报的空泡形态演变和压力数据与试验结果对比,验证了建立的数值方法的有效性. 并基于动力学模态分解方法对空化流场的速度场进行模态分解,分析了各个模态的流场特征. 结果表明,第一阶模态对应频率为 0,代表平均流场;第二阶模态对应频率约为空泡脱落频率,揭示了空泡在水翼前缘周期性地生长与脱落,第三阶模态对应频率约为第二阶模态的 2 倍,揭示了两个大尺度旋涡在水翼后方存在融合行为. 第四阶模态对应频率约为第二阶模态的 3 倍,具有更高的频率,表征流场中存在一些小尺度旋涡的融合行为. 最后对不同空化数下的空化流场进行了模态分解分析,发现脱落空泡的旋涡结构随着空化数的减小而增大,第二阶模态频率随着空化数的减小而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号