首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new, green and reusable nanomagnetic heterogeneous catalyst, namely Fe3O4@TiO2@O2PO2(CH2)NHSO3H, was synthesized and fully characterized using suitable techniques such as infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, vibrating sample magnetometry and energy‐dispersive X‐ray spectroscopy. The applicability of the constructed heterogeneous core–shell catalyst as a promoter was successfully explored for the synthesis of 2‐amino‐4,6‐diphenylnicotinonitrile derivatives upon the reaction of a good range of aromatic aldehydes, acetophenone derivatives, malononitrile and ammonium acetate. The desired products were obtained with good to high yields in short reaction times under solvent‐free conditions. The suggested mechanism offers an anomeric‐based oxidation route to the products in the final step of the synthetic pathway.  相似文献   

2.
Magnetic carbon nanotube‐supported imidazolium ionic liquid (CNT‐Fe3O4‐IL) was synthesized and investigated using various characterization techniques, including Fourier transform infrared and Raman spectroscopies, X‐ray diffraction, vibrating sample magnetometry, scanning and transmission electron microscopies, and thermogravimetric and differential thermal analyses. In order to synthesize the CNT‐Fe3O4‐IL nanocomposites, Fe3O4‐decorated multi‐walled CNTs were modified with 1‐methyl‐3‐(3‐trimethoxysilylpropyl)‐1H‐imidazol‐3‐ium chloride. This catalytic system was found to be a highly stable, active, reusable and solid‐phase catalyst for the synthesis of 2‐aminothiazoles via the one‐pot reaction of ketone, thiourea and N‐bromosuccinimide under mild conditions. Immobilized magnetic ionic liquid catalysis combines the advantages of ionic liquid media with magnetic solid support nanomaterials which enables the application of nanotechnology and green chemistry in chemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
《中国化学会会志》2018,65(5):523-530
Polyethylene glycol‐(N‐methylimidazolium) hydroxide‐grafted hydroxyapatite encapsulated γ‐Fe2O3 nanoparticles, γ‐Fe2O3@HAp@PEG(mim)OH, were prepared and characterized by FTIR, SEM, TEM, TGA, and EDAX. This nanocomposite was applied as a novel, green, nanomagnetic, and recyclable basic phase‐transfer catalyst for the synthesis of tetrahydrobenzopyrans in high yields via the three‐component reaction of aromatic aldehydes, malononitrile, and dimedone or 1,3‐cyclohexanedione in aqueous media at ambient temperature.  相似文献   

4.
Semicarbazide functionalized with chlorosulfonic acid on the surface of silica‐coated magnetic nanoparticles, {Fe3O4@SiO2@(CH2)3Semicarbazide‐SO3H/HCl}, as a novel magnetic Brønsted acid catalyst according to the aims of green chemistry was synthesized and fully characterized using Fourier transform infrared, UV–visible and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, scanning electron, transmission electron and atomic force microscopies and thermogravimetric analysis. The capability and excellent activity of this nanoparticle catalyst were exhibited in the synthesis of two series of compounds with important biological activities, namely 3,3′‐(arylmethylene)bis(4‐hydroxycoumarin) and 1‐carbamato‐alkyl‐2‐naphthol derivatives, under mild, green and solvent‐free conditions. To the best of our knowledge, this is the first study of the synthesis and application of {Fe3O4@SiO2@(CH2)3Semicarbazide‐SO3H/HCl} as Brønsted acid solid magnetic nanoparticles. Consequently the present study can open up a novel and promising intuition in the sequence of logical design, synthesis and applications of task‐specific Brønsted acid magnetic nanoparticle catalyst with favourable properties as a full‐fledged efficient material for sustainable approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Cu(II) immobilized on Fe3O4–diethylenetriamine was designed as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of 2,3‐dihydroquinazolin‐4(1H )‐ones and the oxidative coupling of thiols. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst with unaltered activity make our protocol a green and feasible synthetic strategy.  相似文献   

6.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

7.
Fe3O4 magnetic nanoparticles (MNPs) were functionalized by aminopropylsilane and reacted with aromatic aldehyde, and Fe3O4‐Si‐[CH2]3‐N=CH‐Aryl and Fe3O4‐Si‐(CH2)3‐NH‐CH2‐Aryl MNPs were prepared as novel magnetic nanocatalysts. Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM) were used to identify the MNPs. The catalytic activity of the MNPs was evaluated in the one‐pot synthesis of some novel poly‐substituted pyridine derivatives.  相似文献   

8.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

9.
An efficient procedure for the synthesis of new chromenes by the multicomponent reaction of aldehydes, 4‐hydroxycoumarin and 2‐hydroxynaphthalene‐1,4‐dione in the presence of an ionic liquid supported on Fe3O4 nanoparticles is described. The ionic liquid supported on Fe3O4 nanoparticles as a magnetic catalyst gives products in high yields. Significant features of this method are: short reaction times, excellent yields, green method and use of an effective catalyst that can be recovered and reused many times without loss of its catalytic activity.  相似文献   

10.
Four‐component condensation reaction of aromatic aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of a catalytic amount of ionic liquid on silica‐coated Fe3O4 nanoparticles as a heterogeneous, recyclable and very efficient catalyst provided the corresponding polyhydroquinoline derivatives in good to excellent yields in ethanol under reflux condition. The [Fe3O4@SiO2@(CH2)3Py]HSO4? catalyst was characterized using various techniques such as scanning electron microscopy, powder X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry and Fourier transform infrared spectroscopy. Furthermore, the recovery and reuse of the catalyst were demonstrated seven times without detectable loss in activity.  相似文献   

11.
Fe3O4@vitamin B1 was designed and prepared as an inexpensive and efficient heterogeneous nanocatalyst for the synthesis of new 1,3‐thiazol derivatives. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. The three‐component, one‐pot condensation of arylglyoxal monohydrate, cyclic 1,3‐dicarbonyls and thioamides in water as a green solvent was applied for the preparation of 1,3‐thiazol derivatives. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. The superparamagnetic nanocatalyst is magnetically separable and retains its stability after recycling for at least five consecutive runs without detectable activity loss.  相似文献   

12.
Fe3O4 magnetic nanoparticles (MNPs) were obtained using a reduction–precipitation method. These MNPs were modified with cysteamine hydrochloride. This catalyst was characterized using a number of physicochemical measurements. The Fe3O4–cysteamine MNPs, as an efficient and heterogeneous catalyst, were successfully used for Knoevenagel condensation under mild conditions. The activity of this nanomagnetic catalyst in the Knoevenagel condensation of aromatic aldehydes and malononitrile is described. Easy preparation of the catalyst, easy work‐up procedure, excellent yields and short reaction times are some of the advantages.  相似文献   

13.
An effective approach of one‐pot catalytic Strecker reaction between aromatic aldehydes, aniline or toluidine and trimethylsilyl cyanide in the presence of amine‐functionalized Fe3O4@SiO2 nanoparticles grafted with gallic acid (GA) as a powerful catalyst was developed. The fabricated reusable catalyst demonstrated high efficiency in the synthesis of α‐aminonitriles along with facile work‐up procedure. Fe3O4@SiO2‐NH2‐GA was characterized by Fourier transform‐infrared spectroscopy, scanning electron microscopy image, vibrating‐sample magnetometer curve, energy‐dispersive X‐ray analysis and thermogravimetric analysis.  相似文献   

14.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Eggshell is a hazardous waste by European Union regulations, so that discarded thousands of tons per year. To convert waste (eggshell) to wealth (catalyst), nano‐magnetic eggshell was prepared based on the nano‐Fe3O4, and then the eggshell was converted to Ca(HSO4)2 with organic acid, namely, chlorosulfonic acid. Based on the back titration, 5.18 mmol SO4H group was loaded per gram of the nano‐structure. Using this method eggshell was converted to cheap, green and environment‐friendly solid acid catalyst. The prepared catalyst (nano‐ Fe3O4@Ca(HSO4)2) was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermal gravimetric analysis (TGA). The activity of eggshell waste‐derived catalysts was successfully evaluated in the synthesis of value‐added products, namely indazolo[1,2‐b]‐phthalazinetrione derivatives as a benchmark multicomponent reaction. In addition, design of experiments shows that increase in amount of catalyst (and temperature), boost the reaction yield, especially with steeper slope at higher temperature.  相似文献   

16.
We have developed green, efficient and powerful protocols for the preparation of 2,4,6‐triarylpyridines and 1,8‐dioxodecahydroacridines in the presence of Fe3O4@TiO2@O2PO2(CH2)2NHSO3H as a sulfonic acid‐functionalized titana‐coated magnetic nanoparticle catalyst under mild and solvent‐free reaction conditions. These protocols furnished the desired products in short reaction times with good to high yields (20–40 min and 80–86% in the case of 2,4,6‐triarylpyridines; 15–90 min and 80–93% in the case of 1,8‐dioxodecahydroacridines). The final step of the mechanistic route in the synthesis of 2,4,6‐triarylpyridines proceeds via an anomeric‐based oxidation. Also, the nanomagnetic core–shell catalyst can be recycled and reused in both cases of the scrutinized one‐pot multicomponent reactions with high turnover number and turnover frequency.  相似文献   

17.
Nanocellulose (NC) materials have some unique properties, which make them attractive as organic or inorganic supports for catalytic applications. Nanocatalysts with diameters of less than 100 nm are difficult to separate from the reaction mixture, therefore, magnetic nanoparticles (MNPs) were used as catalysts to overcome this problem. Fe3O4@NCs/BF0.2 as a green, bio‐based, eco‐friendly, and recyclable catalyst was synthesized and characterized using fourier‐transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), X‐ray diffraction (XRD), X‐ray fluorescence (XRF), Brunauer–Emmett–Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. Fe3O4@NCs/BF0.2 was employed for the synthesis of 2,3‐dihydro‐1H‐perimidine derivatives via a reaction of 1,8‐diaminonaphthalene with various aldehydes at room temperature under solvent‐free conditions. The present procedure offers several advantages including a short reaction time, excellent yields, easy separation of catalyst, and environmental friendliness.  相似文献   

18.
Fe3O4 magnetic nanoparticles functionalized with 5,10‐dihydropyrido[2,3‐b]quinoxaline‐7,8‐diol were synthesized as was their complex with copper as a novel nanomagnetic iron oxide catalyst via a simple and green method, and characterized using various techniques. The capability of the catalyst was evaluated in the one‐pot three‐component synthesis of different tetrazoles, which showed very good results. Mild reaction conditions, good reusability and simple magnetic work‐up make this methodology interesting for the efficient synthesis of tetrazoles.  相似文献   

19.
Tribenzylammonium tribromide supported onto magnetic nanoparticles (Br3‐TBA‐Fe3O4) as a bromine source was successfully synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and vibrating sample magnetometry. The synthesized catalyst is shown to be a versatile and highly efficient heterogeneous catalyst for the Knoevenagel condensation and synthesis of 2,3‐dihydroquinazolin‐4(1H )‐one and polyhydroquinoline derivatives. To the best of the authors' knowledge, this is the first report of the use of a bromine source immobilized on Fe3O4 nanoparticles as a magnetically separable catalyst for these reactions. The nanosolid catalyst can be magnetically recovered and reused readily several times without significant loss in catalytic efficiency.  相似文献   

20.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号