首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A DC non-transferred mode plasma spray torch was fabricated for plasma spheroidization. The effect of powder-carrier gas and powder loading on the temperature of the plasma jet generated by the torch has been studied. The experiment was done at different input power levels; the temperature of the jet was within 5000–7000 K argon was used as plasma gas and powder-carrier gas. Nickel powder particles in the size range from 40 to 100 μm were processed. The temperature of the jet was estimated after flowing powder-carrier gas only into the plasma jet and with powder-carrier gas feeding powder into the flame. On introduction of powder-carrier gas and powder loading the temperature of the jet was found to decrease appreciably down to 11%. The temperature of the plasma jet was estimated using the Atomic Boltzmann plot method.  相似文献   

2.
We present detailed measurements of field—and temperature—dependence of magnetization in nanocrystalline YIG (Y3Fe5O12) particles. The fine powders were prepared using sol–gel method. Samples with particle sizes ranging from 45 to 450 nm were obtained. We observe that the saturation magnetization decreases as the particle size is reduced due to enhancement of the surface spin effects. Below a critical diameter Ds≅190 nm, the particles become single domains and the coercive forces reaches a maximum at diameters close to the critical value. As the particle size decreases the coercivity diminishes and at Dp≃35 nm diameters the upper limit of superparamagnetic behavior is reached. A quantitative comparison of temperature and particle size dependence of coercivity shows a satisfactory agreement that is expected for an assembly of randomly oriented particles.  相似文献   

3.
《Current Applied Physics》2010,10(2):521-525
Nanocrystalline hydroxyapatite (HAp) powders were synthesized by a simple method using aloe vera plant extracted solution. To obtain nanocrystalline HAp, the prepared precursor was calcined in air at 400–800 °C for 2 h. The phase composition of the calcined samples was studied by X-ray diffraction (XRD) technique. The XRD results confirmed the formation of HAp phase. With increasing calcination temperature, the crystallite of the HAp increased, showing the hexagonal structure of HAp with the lattice parameter, a, in a range of 0.9520–0.9536 nm and c of 0.6739–0.6928 nm. The particle sizes of the powder were obtained to be 43–171 nm. The optical properties of the calcined powders were characterized by Raman and FTIR spectroscopies. The Raman spectra showed a main peak of the phosphate vibration mode (ν1(PO4)) at ∼963 cm−1 for all the calcined samples. The peaks of the phosphate carbonate and hydroxyl vibration modes were observed in the FTIR spectra for all the calcined powders. The morphology tends to change from a spherical shape to a rod-like shape with increasing calcination temperature as revealed by TEM.  相似文献   

4.
Synthesis of scorodite (FeAsO4·2H2O) using dynamic action agglomeration and the oxidation effect from ultrasound irradiation was investigated. The effect of different reaction temperatures (90, 70, 50, and 30 °C) on the size and morphology of scorodite particles synthesized under O2 gas flow and ultrasound irradiation was explored because the generation of fine bubbles depends on the solution temperature. At 90 °C, the size of scorodite particles was non-homogeneous (from fine particles (<1 μm) to large particles (>10 μm)). The oxidation–reduction potential (ORP) and yield at 90 °C showed lower values than those at 70 °C. The scorodite particles, including fine and non-homogeneous particles, were generated by a decrease in the oxidation of Fe(II) to Fe(III) and promotion of dissolution caused by the generation of radicals and jet flow from ultrasound irradiation. Using ultrasound irradiation in the synthesis of scorodite at low temperature (30 °C) resulted in the appearance of scorodite peaks in the X-ray diffraction (XRD) pattern after a reaction time of 3 h. The peaks became more intense with a reaction temperature of 50 °C and crystalline scorodite was obtained. Therefore, ultrasound irradiation can enable the synthesis of scorodite at 30 °C as well as the synthesis of large particles (>10 μm) at higher temperature. Oxide radicals and jet flow generated by ultrasound irradiation contributed significantly to the synthesis and crystal growth of scorodite.  相似文献   

5.
《Current Applied Physics》2010,10(3):807-812
ZnO nanoparticles doped with Cu were synthesized by solid state reaction using different precursor routes and varying growth environment. Average crystallite size varied from 40 to 100 nm depending upon synthesis temperature, lower temperature favouring smaller particle size. Scanning electron microscope (SEM) images showed that particles synthesized at 250 °C were in the shape of nanorods but those synthesized at 900 °C had spherical shape. Luminescence emission showed marked dependence on the growth conditions varying from ultraviolet (UV) emission to green emission. For making the luminescent nanoparticles bio-compatible, a bioinorganic interface on ZnO:Cu nanoparticles was created by coating them with inert silica. Surface modification of ZnO:Cu was also done with lipophilic polymethylmethacrylate (PMMA). ZnO:Cu nanoparticles showed hexagonal wurtzite structure and the coating of silica was confirmed with the presence of two extra peaks due to silica in the XRD spectra. Thermogravimetric analysis (TGA) and FTIR spectroscopy indicated that PMMA molecules were adsorbed on the surface of ZnO:Cu nanoparticles. SEM images revealed that PMMA adsorption improved the dispersibilty of ZnO:Cu nanoparticles.  相似文献   

6.
Iron-doped nickel oxide (Fe0.01Ni0.99O, abbreviated as FNO) nanoparticles were prepared by sol–gel process using 1,3-propanediol as a solvent and also as a chelating agent, and calcined at the various temperatures (400–1000 °C) for 2 h. The phase composition and the microstructure of the calcined products were investigated by X-ray diffraction and scanning electron microscopy techniques, respectively. Magnetic properties were measured at room temperature using a vibrating sample magnetometer. All calcined samples showed the single phase of FNO cubic rock-salt structure without the presence of any impurity phases. The crystallite size from XRD and particle size from SEM increased as calcining temperature increased. The FNO powders calcined at 400?600 °C revealed the uniform and dense spherical particles in nanosize. The room-temperature ferromagnetism was observed for all samples. When the calcining temperature was increased, the saturation magnetization decreased whereas the coercivity increased, corresponding to the less dense and larger particles. The calcined sample at 400 °C had the best magnetic properties with the highest Ms of 5.34 emu/g (at 10 kOe) and the lowest Hc of 372 Oe.  相似文献   

7.
In order to enhance the superconductive properties of the high temperature superconductors, nanoparticles acting as pinning centers can be intentionally introduced into the structure by chemical doping. In this study, a Dy-doped YBa2Cu3O7?x (YBCO) coated conductor, prepared by a metal organic decomposition process, was investigated to determine the size, composition and 3D distribution of the nanoparticles. It was found that the addition of Dy results in the formation of a high density of secondary phase nanoparticles of composition (YsDy1?s)2Cu2O5 with s  0.6. A tomographic tilt series was acquired by using a scanning transmission electron microscope to analyze the interaction between the particles and the structural defects and to determine the 3D distribution of nanoparticles. For the investigated sample volume (0.06 μm3), 71 particles were located with a particle size distribution ranging between 13 and 135 nm with an average size of ~30 nm. The distribution uniformity, position and the size of the particles are observed to be dependent on the interaction of the particles with the twin boundaries. It is observed that the larger particles are generally located on more than one twin boundary, moreover, the particle size is smaller on the twin boundaries shared by several particles. This suggests that the growth of the particles is determined by fast twin boundary diffusion and the formation of the large particles might be prevented by altering the temperature–time parameters of the production processing to enhance the flux pinning characteristic of the superconductors by achieving a more uniform size of flux pinning centers.  相似文献   

8.
In order to reduce the density mismatch between TiO2 and the low dielectric medium and improve the dispersion stability of the electrophoretic particles in the low dielectric medium for electrophoretic display application, polystyrene/titanium dioxide (PS/TiO2) core–shell particles were prepared via in-situ sol–gel method by depositing TiO2 on the PS particle which was positively charged with 2-(methacryloyloxy)ehyl trimethylammonium chloride (DMC). The morphology and average particle size of PS/TiO2 core–shell particles were observed by transmission electron microscopy (TEM), scanning electron microscope (SEM) and particle size analyzer. It was found that density of PS/TiO2 core–shell particles were reduced obviously and the particles can suspend in the low dielectric medium of low density. The PS/TiO2 core–shell particles can endure ultrasonic treatment because of the interaction between TiO2 and PS. Zeta potential and electrophoretic mobility of the fabricated core–shell particles in a low dielectric medium with charge control agent was measured to be −44.3 mV and −6.07 × 10−6 cm2/Vs, respectively, which presents potential in electronic paper application.  相似文献   

9.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

10.
The protein conformation of soymilk is the key to affecting the instant solubility of soymilk flour. This study aimed to evaluate the effect of cavitation jet treatment time (0, 2, 4, 6, and 8 min) on the instant solubility of soymilk flour based on the conformational changes of protein in soymilk. The results showed that the cavitation jet treatment for 0–4 min significantly unfolded the protein structure of soymilk and increased the content of soluble protein, which reduced the particle size and increased the electrostatic repulsion and the viscosity of soymilk. This was beneficial for soymilk droplets fully atomized and repolymerized in the spray drying tower, forming soymilk flour particles with large size, smooth surface, and uniform distribution. When the cavitation jet treatment time was 4 min, the wettability (from 127.3 ± 2.5 s to 84.7 ± 2.1 s), dispersibility (from 70.0 ± 2.0 s to 55.7 ± 2.1 s), and solubility (from 56.54% to 78.10%) of soymilk flour were significantly improved. However, when the time of the cavitation jet treatment was extended to 8 min, the protein of soymilk aggregated and the stability of soymilk decreased, which reduced the particle size and hurt the surface characteristics of soymilk flour after spray drying. It resulted in a decrease in the instant solubility of soymilk flour. Therefore, the cavitation jet treatment with proper time increases the instant solubility of soymilk flour by improving the protein conformation of soymilk.  相似文献   

11.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

12.
Lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics were prepared from the columbite method using calcined powders of various milling time (24–96 h). The effects on the grain size and dielectric properties of the ceramics were investigated. The results show that dielectric properties of ceramics are strongly influenced by the milling time of the starting precursors. Higher percentage of perovskite phase was found in the ceramics that was milled longer and thus the dielectric constant was found to increase when compared to the conventional 24 h milled results. Moreover, milling time also affected the particle size of the starting precursors and that of PMN powders. Therefore, milling time did not only affect the particle size of PMN powders but also the resultant grain size and the formation of perovskite phase, consequently affecting the dielectric constant of the ceramics.  相似文献   

13.
Single-domain nanoscale magnetic iron particles have been embedded uniformly in an amorphous matrix of alumina using a pulsed laser deposition technique. Structural characterization by transmission electron microscopy (TEM) reveals the presence of a crystalline iron and an amorphous alumina phase. Fine particle magnetism have been investigated by carrying out field and temperature dependence of magnetization measurements using superconducting quantum interference device magnetometer. The particle size of Fe in Al2O3 matrices prepared by changing the deposition time of Fe, have been found to be 9, 7 and 5 nm from TEM studies. At 10 K, the coercivities of these samples are found be 450, 350 and 150 Oe, respectively. At 300 K, the coercivity of Fe–Al2O3 sample decreases from 100 to 50 Oe as the particle size decreases from 9 to 7 nm and finally the sample turns superparamagnetic when the Fe particle size becomes around 5 nm. Based on the calculated value of blocking temperature, TB, (481 K), magnetic anisotropy K (4.8×105 erg/cm3) for Fe, and the Boltzmann constant kB (1.38×10−16 erg/K) from TB=KV/25kB, the mean radius of Fe particles is found to be 9.3 nm. in one of the samples. This is in good agreement with the particle size measured using TEM studies.  相似文献   

14.
In this work, the effect of PZT particle size on the properties of PZT–PC composites was investigated. PZT of various median particle sizes (3.8–620 μm) were used at 50% by volume to produce the composites. The results showed that the dielectric properties of the composites increased marginally with PZT particle size where εr = 176 and 167 for composites with 620 μm and 3.8 μm PZT particle size, respectively. A noticeable increase in d33 values was also found when the particle size was increased where the composite with 620 μm PZT particles size was found to have d33 value of 26 pC/N compared to 17 pC/N for the composite with 3.8 μm PZT particle size. The enhancement in the dielectric and piezoelectric properties was contributed to lesser contacting surfaces between the cement matrix and the PZT particles.  相似文献   

15.
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W–H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 °C for 1–4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 °C. However, in TL of ODH used samples, a single glow peak at 376 °C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 °C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed.  相似文献   

16.
In this paper an ensemble model of cirrus ice crystals is tested against midlatitude in situ estimates of ice water content, volume extinction coefficient and the total solar optical depth. During the Winter of 2005 and Spring 2006 the FAAM (Facility for Airborne Atmospheric Measurements) BAE-146 G-LUXE aircraft flew three flights as part of the CAESAR (Cirrus and Anvils: European Satellite and Airborne Radiation measurements project) campaign of flying in cirrus around the UK. The suite of microphysical instrumentation onboard the aircraft included the PMS 2D-C probe and the Stratton Park Engineering Company (SPEC) cloud particle imager (CPI). The campaign characterized cirrus properties such as ice water content, volume extinction coefficient, ice crystal geometric shape and ice crystal effective dimension. Cirrus cloud temperatures ranged approximately between 215 and 240 K. From the CPI instrument 60–80% of the ice crystal habits were estimated to be either indeterminate or ‘irregular’ (though such irregular crystals could be composed of pristine components) of some form with hexagonal columns and hexagonal plates accounting for generally much less than 3% of the ice crystal population. The CPI estimated integrated ice water content ranged between 5±2 and 45±22 gm?2, whilst the CPI estimate of the total solar optical depth was found to lie between 0.2±0.1 and 1.0±0.5. The CPI estimate of the mean ice crystal effective dimension was found to range between about 59±9 and 90±75 μm.The particle size distribution (PSD) function was estimated using a PSD scheme that requires as input the in situ estimated IWC and measured in-cloud temperature. The CPI estimates of the bulk and microphysical properties of the midlatitude cirrus are used to test whether an ensemble model of cirrus ice crystals together with a PSD scheme can predict CPI in situ estimates to within the experimental uncertainty. This paper demonstrates that the ensemble model coupled with a PSD scheme can predict the ice water content and the integrated ice water content to generally well within the experimental uncertainty if a varying density with respect to size is assumed. The ensemble model together with a PSD scheme is also shown to predict the CPI estimated volume extinction coefficient and the derived total solar optical depth to generally well within the experimental uncertainty. The paper demonstrates that an ensemble model of cirrus combined with a PSD scheme can predict the radiative properties of cirrus without the need to invoke the concept of an ice crystal effective dimension.  相似文献   

17.
PMMA particle synthesis was performed from MMA (methyl methacrylate) and water mixtures, exposed to different ultrasonic systems and frequencies. The sonication sequence was 20 kHz  580 kHz  858 kHz  1138 kHz, and the solution was sampled after each irradiation step for polymerization. Effects of sonication parameters (time, power), polymerization method (thermo-initiated or photo-initiated), use of small amounts of surfactant (Triton X-100™ or Tween® 20) and initial MMA quantity were investigated on particle size and synthesis yields. Particle size and size distribution were measured by DLS (Dynamic Light Scattering), and confirmed via SEM (Scanning Electron Microscopy) images. Synthesis yield was calculated using the dry weight method. Particle composition was estimated using FTIR (Fourier Transform Infra-Red) spectroscopy. PMMA (polymethylmethacrylate) monodispersed particles were successfully synthesized, with a possibility of control in the 78–310 nm size range. These sized-controlled particles were synthesized with a 7.5–85% synthesis yield (corresponding to 7.5–40 g/L particle solid content), depending on operational parameters. Furthermore, a trade-off between particle size and synthesis yield can be proposed: 20 kHz  10 min waiting time  580 kHz  858 kHz leading to 90 nm particles diameter with 72% yield in less than 40 min for the whole sequence. Thus, the synthesis under ultrasound can be found easy to implement and time efficient, ensuring the success of the scale-up approach and opening up industrial applications for this type of polymeric particles.  相似文献   

18.
We present the synthesis, microstructural and magnetic characterization of cubic CoO nanoparticles with well-controlled size and shape. The as-synthesized CoO nanoparticles are stable because of the organic coating that occurred in situ. The Néel temperature is 225 and 280 K for the 42 and 74 nm CoO particles, respectively. The CoO nanoparticles exhibit anomalous magnetic properties, such as large moments, coercivities and loop shifts. These results provide evidence for the formation of spin compensated random system in CoO. The structurally distorted and magnetically disordered surface layer ferromagnetic phase played an important role in the magnetic behavior of CoO nanoparticles. The smaller is the particle size, the stronger is the contribution of the ferromagnetic phase and the more is the surface layer helpful to enhance the observed coercivity and the exchange bias.  相似文献   

19.
The sintering characteristic and dielectric properties of 0.67PMN–0.33PT ceramics prepared by the molten salt synthesis (MSS) method were investigated. PMN–PT particles synthesized by MSS with smaller grain size and good dispersion could lower the sintering temperature of ceramics; PMN–PT ceramics with relative density above 96% could be obtained in the range 1150–1180 °C. The molten salts species could significantly affect the microstructure and properties of MPN-PT ceramics. In the range 1100–1200 °C, PMN–PT ceramics from the sulfate flux MSS powders showed intergranular fracture, but that from the chloride flux MSS powder showed transgranular fracture. At the same sintering condition, the properties of PMN–PT ceramics from the powders prepared in the chloride flux are better than that from the powders prepared in the sulfate flux, their maximum dielectric constant εmax≈29,385 and piezoelectric constant d33≈660 pC/N. The above results demonstrated that PMN–PT ceramics prepared by the molten salts method possessed excellent piezoelectric and dielectric properties.  相似文献   

20.
A laboratory electrostatic precipitator (ESP) together with a bipolar pre-charger has been designed for studying charge-induced agglomeration and fine particle collection. In terms of particle numbers, the ESP collection efficiency drops to its minimum of near 90% for particles with diameters of near 0.2 μm and 3 μm. For other particles, its value is around 94%–95%. By using the bipolar pre-charger, the grade efficiency can be significantly increased for all particle sizes due to the charge-induced particle agglomeration. The grade collection efficiency rises to about 95%–98% for all size particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号