首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 ?, and MXAN, 1.99 ± 0.03 ?. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 ? (EXAFS) or 2.14 ± 0.06 ? (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 ? (EXAFS) or 3.0 ± 0.1 ? (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 ? that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 ? axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions.  相似文献   

2.
The solvation structure of Cu(2+) in methanol (MeOH) and dimethyl sulfoxide (DMSO) has been determined by studying both the extended X-ray absorption fine structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions of the K-edge absorption spectra. The EXAFS technique has been found to provide a very accurate determination of the next-neighbor coordination distances, but it is inconclusive in the determination of the coordination numbers and polyhedral environment. Conversely, quantitative analysis of the XANES spectra unambiguously shows the presence of an average 5-fold coordination in both the MeOH and DMSO solution, ruling out the usually proposed octahedral Jahn-Teller distorted geometry. The EXAFS and XANES techniques provide coherent values of the Cu-O first-shell distances that are coincident in the two solvents. This investigation shows that the combined analysis of the EXAFS and XANES data allows a reliable determination of the structural properties of electrolyte solutions, which is very difficult to achieve with other experimental techniques.  相似文献   

3.
辽河减压渣油中非卟啉镍的XAFS研究   总被引:6,自引:0,他引:6  
为获得石油中非卟啉Ni的结构信息,采用荧光法对辽河减压清油中非叶琳Ni的 K边进行了XAFS测试非叶琳Ni第一配位壳层的结构和Ni-四苯基卟啉(NiTPP)的配 位结构类似,也是4个氮原子,呈平面四方构型为0.192nm,在较高的配位壳层,二 者存在一定的差别此外,根据XAFS测试,对石油中非卟啉Ni讨论.  相似文献   

4.
Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure of Mn(II) in aqueous MnBr2 solutions at ambient conditions from very dilute to the near saturation limit. The Mn K-edge EXAFS spectra for 0.05 and 0.2 m solutions showed that there was no Br(−I) in the first shell, and that the Mn(II) was fully hydrated with six water molecules in an octahedral arrangement. In contrast, for 6 m solution, the coordination number of water was reduced to about 5, and an average of about one bromine atom was present in the first shell as a contact ion pair. The 1s → 4p transition at 6545.5 eV confirmed the observation of Mn–Br contact ion pairs at high concentrations and the 1s → 3d transition at 6539.5 eV showed that the first shell coordination symmetry remained octahedral even in the presence of Mn–Br ion pairs.  相似文献   

5.
To develop a solid scientific basis for maintaining soil quality and formulating effective remediation strategies, it is critical to determine how environmentally-important trace metals are sequestered in soils at the molecular scale. The speciation of Mn, Fe and Cu in soil organic matter has been determined by synchrotron-based techniques: extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). We show the structural similarity between the surface complexes of Mn(II), Fe(III) and Cu(II). These cations are bound to the surface through oxygen atoms. Each one presents a more or less tetragonal-distorted octahedral geometry. The use of X-ray absorption spectroscopy provides a relevant method for determining trace-metal speciation in both natural and contaminated environmental materials.  相似文献   

6.
SiO(2)-supported clusters of tantalum were synthesized from adsorbed Ta(CH(2)Ph)(5) by treatment in H(2) at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiO(2)-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H(2) and reoxidized in O(2), the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO(2) support and their chemistry in solution, as determined by the group of Cotton.  相似文献   

7.
The integral membrane enzyme particulate methane monooxygenase (pMMO) converts methane, the most inert hydrocarbon, to methanol under ambient conditions. The 2.8-A resolution pMMO crystal structure revealed three metal sites: a mononuclear copper center, a dinuclear copper center, and a nonphysiological mononuclear zinc center. Although not found in the crystal structure, solution samples of pMMO also contain iron. We have used X-ray absorption spectroscopy to analyze the oxidation states and coordination environments of the pMMO metal centers in as-isolated (pMMO(iso)), chemically reduced (pMMO(red)), and chemically oxidized (pMMO(ox)) samples. X-ray absorption near-edge spectra (XANES) indicate that pMMO(iso) contains both Cu(I) and Cu(II) and that the pMMO Cu centers can undergo redox chemistry. Extended X-ray absorption fine structure (EXAFS) analysis reveals a Cu-Cu interaction in all redox forms of the enzyme. The Cu-Cu distance increases from 2.51 to 2.65 A upon reduction, concomitant with an increase in the average Cu-O/N bond lengths. Appropriate Cu2 model complexes were used to refine and validate the EXAFS fitting protocols for pMMO(iso). Analysis of Fe EXAFS data combined with electron paramagnetic resonance (EPR) spectra indicates that Fe, present as Fe(III), is consistent with heme impurities. These findings are complementary to the crystallographic data and provide new insight into the oxidation states and possible electronic structures of the pMMO Cu ions.  相似文献   

8.
A family of diaminobutane core, poly(propylene imine) dendrimers coordinated to Cu(II), DAB-Am(n)-Cu(II)x (n = 4, 8, 16, 32, 64, x = n/2), was studied by means of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopies. The geometry of the dipropylene triamine (dpt)-Cu(II) end-group complexes for all dendrimer generations is reported for the first time and is found to be that of a square-based pyramid with each Cu ion bound to three nitrogen atoms (Cu-N distance approximately 2.03 A) of the dpt end group of the dendrimer. An oxygen atom residing 1.96 A from the Cu ion also occupies the equatorial plane, and the pyramid is completed by an axial oxygen at approximately 2.65 A. In addition, we report for the first time that reduction of the Cu(II)-dendrimer complexes with NaBH4 yields DAB-Am(n)-Cu(0)(cluster) species. Transmission electron microscopy (TEM) studies of the reduced species demonstrate that there is a systematic decrease in the size of the generated Cu clusters with increasing dendrimer generation. Additionally, it was found that the size of the nanoclusters is a function of the n/x ratio of the DAB-Am(n)-Cu(II)x precursor, with highly monodisperse, extremely small nanoclusters (r(cluster) = 8.0 +/- 1.6 A) obtained with n = 64 and x = 16. EXAFS and XANES measurements on the reduced DAB-Am(n)-Cu(0)(cluster) corroborate the TEM data, and provide additional information on the possible encapsulation of the Cu nanoclusters by the dendrimers.  相似文献   

9.
Glass has been used in ornaments and decorations in Thailand for thousands of years, being discovered in several archeological sites and preserved in museums throughout the country. To date only a few of them have been examined by conventional methods for their compositions and colorations. In this work we report for the first time an advanced structural analysis of Thai ancient glass beads using synchrotron X-ray absorption spectroscopy (XAS) and energy-dispersive X-ray (EDX) spectrometry. Four samples of ancient glass beads were selected from four different archeological sites in three southern provinces (Ranong, Krabi and Pang-nga) of Thailand. Archaeological dating indicated that they were made more than 1,300 years ago. A historically known method for obtaining a red color is to add compounds containing transition elements such as gold, copper, and chromium. For our samples, EDX spectrometry data revealed existing fractions of iron, copper, zinc, and chromium in ascending order. Thus, copper was selectively studied by XAS as being potentially responsible for the red color in the glass beads. K-shell X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) of copper were recorded in fluorescence mode using an advanced 13-element germanium detector. Comparisons with XANES spectra of reference compounds identified two major forms of copper, monovalent copper and a metallic cluster, dispersed in the glass matrix. The cluster dimension was approximated on the basis of structural modeling and a theoretical XANES calculation. As a complement, EXAFS spectra were analyzed to determine the first-shell coordination around copper. XAS was proven to be an outstanding, advanced technique that can be applied to study nondestructively archaeological objects to understand their characteristics and how they were produced in ancient times.  相似文献   

10.
Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 A, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O 3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.  相似文献   

11.
Denecke MA  Dardenne K  Marquardt CM 《Talanta》2005,65(4):1008-1014
X-ray absorption near edge structure (XANES) spectroscopy for in situ metal valence determination has become a powerful analytical tool in heterogeneous systems. This is in part because it is applicable without prior separation procedures. For some systems, however, determining the oxidation state from XANES spectra is not straightforward and caution must be used. We show that the analysis of L3,2 edge EXAFS (extended X-ray absorption fine structure) spectra is better suited to distinguish between Np(IV) and Np(V) than from their XANES spectra. Whereas evidence for the oxidation of Np(IV) in solution samples from their Np L3 XANES is unclear, their EXAFS data unequivocally reveals Np(V) formation in the solutions.  相似文献   

12.
Self-aligned nanostructures (SAN) made by reacting Co nanoparticles with crystalline Si substrates at high temperatures were studied with grazing incidence X-ray absorption spectroscopy (GI-XAS). The results from extended X-ray absorption fine structure (EXAFS) analysis and X-ray absorption near-edge spectroscopy (XANES) were used to identify SAN as crystalline CoSi2. Theoretical calculations of EXAFS and XANES spectra of several crystalline cobalt silicides were performed with the FEFF8 package. On the basis of these studies, the SAN samples were determined to contain nearly pure CoSi2.  相似文献   

13.
Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing >90% of the initial added As (15,000 mg kg(-1)) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg(-1)) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.  相似文献   

14.
X-ray absorption spectroscopy (XAS) has become a prominent tool for the element-specific analysis of transition metals at the catalytic center of metalloenzymes. In the present study the information content of X-ray spectra with respect to the nuclear geometry and, in particular, to the electronic structure of the protein-bound metal ions is explored using the manganese complex of photosystem II (PSIII) as a model system. The EXAFS range carries direct information on the number and distances of ligands as well as on the chemical type of the ligand donor function. For first-sphere ligands and second-sphere metals (in multinuclear complexes), the determination of precise distances is mostly straightforward, whereas the determination of coordination numbers clearly requires more effort. The EXAFS section starts with an exemplifying discussion of a PSII spectrum data set with focus on the coordination number problem. Subsequently, the method of linear dichroism EXAFS spectroscopy is introduced and it is shown how the EXAFS data leads to an atomic resolution model for the tetra-manganese complex of PSII. In the XANES section the following aspects are considered: (1) Alternative approaches are evaluated for determination of the metal-oxidation state by comparison with a series of model compounds. (2) The interpretation of XANES spectra in terms of molecular orbitals (MOs) is approached by comparative multiple-scattering calculations and MO calculations. (3) The underlying reasons for the oxidation-state dependence of the XANES spectra are explored. Furthermore, the potential of modern XANES theory is demonstrated by presenting first simulations of the dichroism in the XANES spectra of the PSII manganese complex.  相似文献   

15.
The structure of iron and managanese ions substituted in the framework of nanoporous AlPO-5 is determined by ex situ and in situ X-ray absorption spectroscopy. Fe K-edge XANES and EXAFS studies clearly indicate that iron ions are present as Fe(III) in octahedral coordination in the assynthesised material and tetrahedral coordination in the calcined material in both pure FeAlPO-5 and FeMnalPO-5. XANES and EXAFS results also indicate that reaction with hydrogen peroxide causes the removal of Fe(III) ions from the framework. Mn K-edge XANES and EXAFS of FeMnAlPO-5 samples indicate that Mn(II) ions are present in the framework, tetrahedrally coordinated, in the as-synthesised material but upon calcination it is found that the Mn(II) ions are removed from the framework, suggesting a different synthesis strategy is necessary to stabilise the Mn(II) ions in the framework simultaneously with Fe(III) ions.  相似文献   

16.
X-ray absorption spectroscopy measurements were used to determine the structure of the first coordination shell of Fe(II) ions in aqueous and acetone based solutions. Extended X-ray absorption fine structure analysis coupled with ab initio X-ray absorption near edge structure calculations confirms the octahedral coordination of the iron ion in water based solution. Data collected for acetone rich solutions can be reproduced assuming coexistence of the octahedral Fe(H(2)O)(6)(2+) and tetrahedral [FeCl(4)](2-) complexes. Distortion of the tetrahedral coordination of ion was detected in some of the acetone based solutions.  相似文献   

17.
Careful analysis of Pt L3-edge extended X-ray absorption fine structure (EXAFS) spectra shows that the hydrated platinum(II) ion in acidic (HClO 4) aqueous solution binds four water molecules with the Pt-O bond distance 2.01(2) A and one (or two) in the axial position at 2.39(2) A. The weak axial water coordination is in accordance with the unexpectedly small activation volume previously reported for water exchange in an interchange mechanism with associative character. The hydrated cis-diammineplatinum(II) complex has a similar coordination environment with two ammine and two aqua ligands strongly bound with Pt-O/N bond distances of 2.01(2) A and, in addition, one (or two) axial water molecule at 2.37(2) A. This result provides a new basis for theoretical computational studies aiming to connect the function of the anticancer drug cis-platin to its ligand exchange reactions, where usually four-coordinated square planar platinum(II) species are considered as the reactant and product. (195)Pt NMR spectroscopy has been used to characterize the Pt(II) complexes.  相似文献   

18.
An X-ray absorption fine structure (XAFS) study has been conducted to reveal the local structure and chemical state of the copper in the complex of an acetylacetonate-based ligand (L1) and copper ion in acetonitrile solution. The copper ion in the complex was found to be divalent from the Cu K-edge X-ray absorption near-edge structure (XANES) spectrum. The FEFF (ab initio multiple scattering calculations of XAFS) were performed with the model compounds, whose structures were optimized by using MOPAC program with AM1 Hamiltonian. The comparative study of the experimental XAFS spectra and theoretical calculations from FEFF gave the perspectives for clarifying the coordination structure of the complex of L1 and copper ion.  相似文献   

19.
20.
Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure about Mn(II) and Br(-1) ions that exist as contact ion pairs in supercritical water. This work was performed to clarify why solutions of MnBr2 in supercritical water are known to effectively catalyze the aerobic oxidative synthesis of terephthalic acid from p-xylene as well as a number of other methylaromatic compounds. The Mn and Br K-edge spectra were collected at the bending magnet beamline (sector 20) at the Advanced Photon Source, Argonne National Laboratory. The first-shell coordination structure about the Mn(II) ion changes from octahedral at ambient conditions to tetrahedral at supercritical conditions. Under supercritical conditions, the measured bond distances of Mn-OH2 and Mn-Br are 2.14 and 2.46 A, respectively. Direct contact ion pairs form with about 2 Br(-1) ions present in the first coordination shell of the Mn(II) ion. The structure of dissolved MnBr2, below 1.0 m, changes from essentially [Mn(II)(H2O)6]+2 to [Mn(II)(H2O)2(Br(-1))2] in supercritical water (scH2O). When an excess of Br(-1) ion is added, the bromide coordination number increases and the number of water molecules decreases. The results show that the initial MnBr2 catalyst in scH2O is tetrahedral with two Mn-Br contact ion pairs. The presence of the acetate anion deactivates the catalyst by formation of insoluble MnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号