首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm 2 based on the two-temperature equation,and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range,for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0,100 nm and 500 nm,it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that,in the intense femtosecond laser ablation of aluminum,the material ablation is mainly induced by the thermal conduction of free electrons,instead of the direct absorption of the laser energy; in addition,the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.  相似文献   

2.
Summary The energy absorption rate by a classical homogeneous plasma irradiated by a strong fluctuating laser field via inverse bremsstrahlung is considered. A chaotic-field model is used and comparison is made with the fundamental model of a purely coherent field. In the present analysis, the emphasis is put on the interplay between the laser field statistics and the plasma electron energy distribution. Numerical calculations are concerned with the dependence of the energy absorption rates on laser intensity and frequency. Laser intensity values up to 4.6\1015 W/cm2 are considered. The multiphoton structure of the energy absorption is analysed as well. Concerning the joint influence of the radiation and particle statistics on the absorption rate, the basic result may be stated as follows. For situations where the particle thermal velocityv T is larger than the oscillatory velocityv 0 imparted by the field (v T v 0, relatively weak field), the absorption rate is only weakly dependent on the field statistics. For situations, instead, whenv 0v T , which occurs for very high intensities, the reverse becomes true: now the initial particle velocity distribution plays the modest role of a velocity spread of an electron beam oscillating atv 0. In general, for very high intensities (v 0v T ), the energy absorption via bremsstrahlung becomes less effective because the high oscillatory velocityv 0 reduces the time available to electrons for the interaction with the ions, the third body which makes possible the exchange for energy between electrons and a radiation field. We report also, for the first time, results on the Marcuse effect for the case of a chaotic laser field, along with calculations of the absorption rate for a directed electron beam.  相似文献   

3.
The production of electron-positron and muon-antimuon pairs in high-frequency laser fields via few-photon absorption is considered. It is assumed that an intense X-ray laser beam collides either with a relativistic ion beam or with a second, equally intense laser beam. We study the generation of free e + e ? pairs, free μ+μ? pairs, and bound-free e + e ? pairs where in the latter case the electron is born in a low-lying atomic orbit of the projectile nucleus. Effects resulting from the finite nuclear size, the laser’s polarization state, and its magnetic field component are examined, which are testable experimentally by virtue of upcoming X-ray free-electron laser (XFEL) devices.  相似文献   

4.
利用1064 nm Nd:YAG激光器研究了激光诱导铁条等离子体的特征参数。为了减小测量误差和谱线自发辐射跃迁几率不确定性带来的计算误差,采用改进的迭代Boltzmann方法精确求解铁等离子体的电子温度为8058 K。Lorentz函数拟合Fe I 376.553 nm得到等离子体的电子数密度为8.71017 cm-3。分析表明等离子体的加热机制主要是逆轫致过程,其吸收系数是0.14 cm-1。实验数据证实激光诱导铁等离子体处于局部热力学平衡状态和光学薄状态。  相似文献   

5.
6.
徐慧  盛政明  张杰 《物理学报》2006,55(10):5354-5361
采用一维粒子模拟(PIC)方法,研究了相对论效应对P偏振激光斜入射非均匀等离子体时产生的共振吸收的影响. 计算表明,弱相对论情况下,在临界面附近产生的电子等离子体波的相对论非线性效应占主要作用;随着入射光场的逐渐增大,吸收率逐渐降低. 当入射光强超过3.7×1017W/cm2时,由于超短激光脉冲本身在等离子体中产生相对论效应、等离子体波破裂效应,以及参量不稳定过程激发等,吸收系数随着激光强度又开始增加. 固定等离子体密度标长,取不同的激光入射角、电子初始温度,相对论效应对吸收系数的影响是一致的. 关键词: 激光等离子体 相对论效应 共振吸收 粒子模拟  相似文献   

7.
尹元昭 《物理学报》1983,32(11):1407-1415
本文从单粒子模型出发,对自由电子激光放大器在小信号情形下的工作机理与参量特性进行了比较详细的分析与讨论,结果表明自由电子激光放大器实质上是电子束与快迴旋波的相互作用,而电子在轴向均匀静磁场及横向周期静磁场中运动的迴旋谐振条件对这种相互作用有重大的影响,本文对放大器的参量(如电子束的电压和电流密度、轴向及横向静磁场强度、横向静磁场波长等)与放大器的中心工作频率、放大带宽、小信号增益和放大电磁波的波数的关系进行了数值计算,并指出了最佳设计的途径,经过适当设计,自由电子激光放大器的小信号增益达到10-2厘米-1或1米的e倍距离并有足够的带宽是不难的。 关键词:  相似文献   

8.
Using three-dimensional test particle simulations, we investigated electrons accelerated by a focused flat-top laser beam at different intensities and flatness levels of the beam profile before focusing in vacuum. The results show that the presence of sidelobes around the main focal spot of the focused flat-top laser beam influences the optimum (as far as electron acceleration is concerned) initial momentum (and incident angle) of electrons for acceleration. The difference of initial conditions between laser beams with and without sidelobes becomes evident when the laser field is strong enough (a0>10, corresponding to intensities I>1×1020 W/cm2 for the laser wavelength λ=1 μm, where a0 is a dimensionless parameter measuring laser intensity). The difference becomes more pronounced at increasing a0. Because of the presence of sidelobes, there exist three typical CAS (capture and acceleration scenario) channels when a0≥30 (corresponding to I>1×1021 W/cm2 for λ=1 μm). The energy spread of the outgoing electrons is also discussed in detail. PACS 41.75.Jv; 42.60.Jf; 42.25.Fx  相似文献   

9.
C.P. Singh  Sukhdev Roy   《Optik》2002,113(9):373-381
We present a detailed and accurate analysis of low power spatial light modulation characteristics of bacteriorhodopsin (bR) based on nonlinear intensity induced absorption. Amplitude modulation of probe laser read beam transmissions at 410 nm and 640 nm, corresponding to the peak absorption of MII and O states of D96N bR and WT bR respectively, by the modulation laser write beam intensity-induced population changes at 570 nm has been analyzed, considering all intermediate states with both forward and backward transitions in the respective bR photocycles, using the rate equation approach. The SLM characteristics are shown to be sensitive to the normalized small signal absorption coefficient β, rate constants of MII and O intermediate states and the absorption cross-section of the initial B state at the probe wavelength (σBp). There exists an optimum value of β for which maximum percentage modulation can be achieved. It is shown that for extended MII state lifetime of 250 s in D96N bR and O state lifetime of 2.2 s in WT bR, with σBp= 0, 100% modulation of read beam transmissions can be achieved, leading to high dynamic range and sensitivity for low laser write beam intensities of 50 μW/cm2 and 4 mW/cm2 at 570 nm, respectively.  相似文献   

10.
The high current electron beam losses have been studied experimentally with 0.7 J, 40 fs, 6 1019 Wcm-2 laser pulses interacting with Al foils of thicknesses 10-200 μm. The fast electron beam characteristics and the foil temperature were measured by recording the intensity of the electromagnetic emission from the foils rear side at two different wavelengths in the optical domain, ≈407 nm (the second harmonic of the laser light) and ≈500 nm. The experimentally observed fast electron distribution contains two components: one relativistic tail made of very energetic (T h tail ≈ 10 MeV) and highly collimated (7° ± 3°) electrons, carrying a small amount of energy (less than 1% of the laser energy), and another, the bulk of the accelerated electrons, containing lower-energy (T h bulk=500 ± 100 keV) more divergent electrons (35 ± 5°), which transports about 35% of the laser energy. The relativistic component manifests itself by the coherent 2ω0 emission due to the modulation of the electron density in the interaction zone. The bulk component induces a strong target heating producing measurable yields of thermal emission from the foils rear side. Our data and modeling demonstrate two mechanisms of fast electron energy deposition: resistive heating due to the neutralizing return current and collisions of fast electrons with plasma electrons. The resistive mechanism is more important at shallow target depths, representing an heating rate of 100 eV per Joule of laser energy at 15 μm. Beyond that depth, because of the beam divergence, the incident current goes under 1012 Acm-2 and the collisional heating becomes more important than the resistive heating. The heating rate is of only 1.5 eV per Joule at 50 μm depth.  相似文献   

11.
An analytical model of K α radiation of thin laser targets has been developed. It has been shown that, for such targets, the motion of fast electrons is significant not only in the target itself but also in vacuum. The considered dependences for the free path length of a fast electron and for the absorption coefficient of laser radiation on the laser intensity with allowance for the electron motion in vacuum make it possible to match the results of the proposed model with the experimental data on generation of K α radiation in wide ranges of laser intensities (1018–1021 W/cm2) and thicknesses (1–100 μm) of targets.  相似文献   

12.
The parameters of fast particles generated upon the interaction of 1019 W/cm2 laser pulses with solid targets are studied. The spatial and energy parameters of fast ions are investigated. It is found that approximately 1–3% of the laser energy is transformed to the energy of mega-and submegaelectronvolt ions at laser pulse intensities ≥1018 W/cm2. It is shown experimentally that an ion beam is directed perpendicular to the target surface. The analytic and numerical simulations agree with experimental results and predict the propagation of fast electrons in the mirror direction with respect to the incident laser beam and of ions perpendicular to the target. The theoretical calculations are compared with the experimental output and spectra of fast electrons and ions.  相似文献   

13.
Thin films of Cd, In, Sn, and Zn are deposited onto glass and irradiated in air by means of a cw-Ar+ laser beam. The films are oxidized. The variations of the diameter of the oxidized zones are measured as a function of time and laser beam power, P. The temperature is measured by an interferometric method. It is shown that oxidation proceeds rapidly at some critical temperature, independent of P over some range of P, in the cases of Cd, In, and Zn. These critical temperatures correspond to the melting temperatures of Cd and In. No relation to any specific temperature of the Zn-O phase diagram is found. Feedback effects are also discussed.  相似文献   

14.
15.
A possibility of precise measurement of the electron beam energy using absorption of radiation by electrons in a homogeneous magnetic field for electrons of high energy in the range up to a few hundred GeV, was considered earlier. In this paper, with the purpose of experimental checking of this method in the range of several tens MeV of electrons energies, a possibility of measurement of absolute energy of the electron beam with a relative accuracy up to 10?4, is considered. We take into account influence of the laser beam diffraction, of the spread of electrons over energies, and of the length of formation of radiation absorption in the process of electron beam energy measurement. The laser wavelength and the length of the magnet are chosen depending on the length of photon absorption formation. It is found that the kinematical restrictions on the photon absorption process lead to the selection in angles of propagation of photons, which can be absorbed by the beam electrons. It is shown that parameters of the electron beam will noticeably not vary during the measurement of the energy.  相似文献   

16.
The influence of relativistic-ponderomotive nonlinearities and the plasma inhomogeneity on the nonlinear interaction between a high-power laser beam and a warm underdense plasma are studied. It is clear that the relativistic ponderomotive force and the electron temperature modify the electron density distribution and consequently change the dielectric permittivity of the plasma. Therefore, by presenting the modified electron density and the nonlinear dielectric permittivity of the warm plasma, the electromagnetic wave equation for the propagation of intense laser beam through the plasma is derived. This nonlinear equation is numerically solved and the distributions of electromagnetic fields in the plasma, the variations of electron density, and plasma refractive index are investigated for two different background electron density profiles. The results show that the amplitude of the electric field and electron density oscillations gradually increase and decrease, during propagation in the inhomogeneous warm plasma with linear and exponential density profiles, respectively, and the distribution of electron density becomes extremely sharp in the presence of intense laser beam. It is also indicated that the electron temperature and initial electron density have an impact on the propagation of the laser beam in the plasma and change the plasma refractive index and the oscillations' amplitude and frequency. The obtained results indicate the importance of a proper choice of laser and plasma parameters on the electromagnetic field distributions, density steepening, and plasma refractive index variations in the interaction of an intense laser beam with an inhomogeneous warm plasma.  相似文献   

17.
The power broadened absorption lineshapes of 2-level sodium atoms were carefully studied, using a frequency stabilized cw dye laser and a highly collimated atomic beam. At low driving fields the absorption lineshape was lorentzian as expected. However, at field intensities greater than 50 mW/cm2, the lineshape exhibited an asymmetry which was attributed to atomic recoil effects.  相似文献   

18.
We have measured the electron energy of the thermal group of electrons in both longitudinal and transverse electron beam created helium glow discharges. The measurement technique employs the ratio of intensities of spectral lines in the 2s3S?np3P He I series. Values of kTe between 0.07 and 0.11 eV were obtained. These energies are typical of the beam-generated electric field free plasmas. The competitive loss of helium ions by recombination and by charge transfer in a He?Hg electron beam created plasma is calculated. The results are applied to the Hg+ laser pumping scheme using a electron beam created He?Hg plasma.  相似文献   

19.
An electron beam source based on pseudospark discharge was successful in operation at the beam voltage of 200keV and beam current of 2kA. The detailed design of a compact free electron laser using an electron beam by a pseudospark discharge is described. The compact free electron laser consists of a smaller Marx generator with 6 capacitors and switches, a water capacitance of 6nF and a beam source with a high brightness of 3×1011 A/(m rad)2. The computer simulation shows that an output power of 101MW is expected at a frequency of 38GHz with a beam energy of 300keV, a current of 2kA and a beam emittance of 48mm mraa.  相似文献   

20.
利用脉宽为150fs、强度为8×1015W/cm2的P偏振飞秒激光研究了与 金属靶和绝缘靶 相互作用过程中的激光能量吸收、超热电子产额及超热电子能谱. 实验发现,由于绝缘靶电 导率小,因此其电荷分离势大于金属靶,从而导致绝缘靶比金属靶具有较小的激光能量吸收 、较少的超热电子发射和较高的超热电子温度. 关键词: 金属靶 绝缘靶 激光吸收 超热电子  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号