首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between dimethylsulfoxide (DMSO) and phospholipid monolayers with different polar headgroups was studied using "in situ" Brewster angle microscopy (BAM) coupled to a Langmuir trough. For a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer, DMSO was shown to significantly impact the structure of the liquid expanded (LE) and gaseous phases. The domains reorganized to much larger domain structures. Domains in the liquid condensed (LC) phase were formed on the DMSO-containing subphase at the mean molecular area where only gaseous and LE phases were previously observed on the pure water subphase. These results clearly demonstrate the condensing and caging effect of DMSO molecules on the DPPC monolayer. Similar effects were found on dipalmitoyl phosphatidyl ethanolamine, glycerol, and serine phospholipids, indicating that the condensing and caging effect is not dependent upon the phospholipid headgroup structure. The DMSO-induced condensing and caging effect is the molecular mechanism that may account for the enhanced permeability of membranes upon exposure to DMSO.  相似文献   

2.
We have concurrently studied the surface pressure (pi) versus area (A) isotherms and microscopic surface morphological features of Langmuir monolayers of diethylene glycol mono-n-octadecyl ether (C18E2) by film balance and Brewster angle microscopy (BAM) over a wide range of temperature. At temperatures < or =10 degrees C, the monolayers exist in the form of condensed phase even just after the evaporation of the spreading solvent, suggesting that the melting point of the condensed phase is above this temperature. At > or =15 degrees C, the monolayers can exist as gas (G), liquid expanded (LE), and liquid condensed (LC) phases and undergo a pressure-induced first-order phase transition between LE and LC phases showing a sharp cusp point followed by a plateau region in the pi-A isotherms. A variety of 2-D structures, depending on the subphase temperature, are observed by BAM just after the appearance of the cusp point. It is interesting to note here that the domains attain increasingly large and compact shape as the subphase temperature increases and finally give faceted structures with sharp edges and corners at > or =30 degrees C. The BAM observations were coupled with polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to gain better understanding regarding the conformational order and subcell packing of the molecules. The constancy of the methylene stretching modes over the studied temperature range suggests that the hydrocarbon chains do not undergo any conformational changes upon compression of the monolayer. However, the full width at half-maximum (fwhm) values of the asymmetric methylene stretching mode (nu(as)(CH(2))) are found to respond differently with changes in temperature. It is concluded that even though the trans/gauche ratio of the hydrocarbon chains remains virtually constant, the LE-LC phase transition upon compression of the monolayer is accompanied by a loss of the rotational freedom of the molecules.  相似文献   

3.
Thermodynamic and morphological properties of Langmuir monolayers of di-n-dodecyl hydrogen phosphate (DDP) have been studied by film balance and Brewster angle microscopy (BAM) over a wide range of temperature between 5 and 40 degrees C. From pi-A isotherms, a generalized phase diagram consisting of gas (G), liquid expanded (LE) and liquid condensed (LC) phases is constructed for the DDP monolayers. The BAM images show the formation of gas bubble in the bright background of LE phase during G-LE phase transitions and fingering LC domains during LE-LC phase transitions. The shapes of these domains are independent of temperature, showing a sharp contrast to the temperature-dependent monolayer morphologies of amphiphilic systems where the shape of the LC domains changes either from compact circular to fingering or from irregular or spiral to compact patterns with increasing temperature. In addition, the domains do not show any change in their shapes with decreasing the compression rate. Since the two-alkyl chains are directly attached by covalent bonds to the phosphate group, the rearrangement of the molecules needs to move the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes the fingering domains, which are independent of external variables. Although the domains are formed in a fingering shape, the equilibrium shape can be attained by about 120 min at 15 degrees C indicating a rather slow relaxation rate.  相似文献   

4.
Four different phases and four different first-order phase transitions have been shown to exist in Gibbs adsorption layers of mixtures containing n-hexadecyl dihydrogen phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2. These conclusions have been made from surface pressure-time (pi-t) adsorption isotherms measured with a film balance and from monolayer morphology observed with a Brewster angle microscopy (BAM). The observed four phases are gas (G), liquid expanded (LE), liquid condensed (LC) and LC' phases. Three first-order phase transitions are G-LE, LE-LC and LC-LC'. However, the thermodynamically allowed G-LC phase transition in a 1.2 x 10(-4) M mixture at 2 degrees C, which is below the so-called triple point, is kinetically separated into the G-LE and LE-LC phase transitions. The most interesting observation is that the homogeneous LC phase shows a new first-order phase transition named as LC-LC' at 2 or 5 degrees C. The LE and LC phases represent circular and fractal shaped domains, respectively, whereas the LC' phase shows very bright, anisotropic and characteristic shaped domains.  相似文献   

5.
The surface phase behavior of di-n-dodecyl hydrogen phosphate (DDP) in Langmuir monolayer and its interactions with L-arginine (L-arg) have been investigated by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM). The DDP monolayers on pure water show a first-order liquid expanded-liquid condensed (LE-LC) phase transition and form fingering LC domains having uniform brightness at different temperatures. At 15 degrees C, the pi-A isotherms on pure water and on different concentration solutions of L-arg show a limiting molecular area at approximately 0.50 nm(2)/molecule. With increasing the subphase concentration of L-arg up to 4.0 x 10(-4)M, the LE and the LE-LC coexistence regions shift to larger molecular areas and higher surface pressures, respectively. With a further increase in the concentration of L-arg beyond this critical concentration, these isotherms show little or no more expansion. These results have been explained by considering the fact that the L-arg undergoes complexation with the DDP to form L-arg-DDP that remains in equilibrium with the components at the air-water interface. As the concentration of L-arg in the subphase increases, the equilibrium shifts towards the complex. At a concentration of L-arg > or =4.0 x 10(-4)M, the DDP monolayers get saturated and show the characteristics of the new amphiphile, L-arg-DDP. BAM is applied to confirm the above results. When the concentration of the L-arg is <4.0 x 10(-4)M, domains always start forming at an area of approximately 0.64 nm(2)/molecule, which is the critical molecular area for the phase transition in the DDP monolayers on pure water. In contrast, when the monolayers are formed on a solution containing > or =4.0 x 10(-4)M L-arg, comparatively smaller size domains are formed after the appearance of a new cusp point at approximately 0.55 nm(2)/molecule. With an increase in the concentration of L-arg in the subphase, the size of the domains decreases indicating that the fraction of the DDP gradually decreases, whereas the fraction of the complex gradually increases. In addition, a very simple procedure for determination of the stability constant, which is 2.6 x 10(4)M(-1) at 15 degrees C, has been suggested.  相似文献   

6.
We present the adsorption kinetics and surface morphology of the adsorbed monolayers of bis(ethylene glycol) mono-n-tetradecyl ether (C14E2) by film balance and Brewster angle microscopy. A cusp point followed by a plateau region in the pressure (pi)-time (t) adsorption isotherm indicates a first-order phase transition in the coexistence region between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase. A variety of condensed phase domains surrounded by the homogeneous LE phase are observed just after the appearance of the phase transition. The domains are of a spiral or striplike structure at lower temperatures. This characteristic shape of the domains is because of strong dipole-dipole repulsion between the molecules. At 18 degrees C, the domains are found to be quadrant structures. A slight increase in subphase temperature (around 1 degrees C) brings about a quadrant-to-circular shape transition in the domains. The circular domains return to quadrant structures as the subphase temperature is lowered. The domains completely disappear when the temperature is increased beyond 19 degrees C, suggesting that the critical temperature for the condensed domain formation is 19 degrees C. Above this temperature, the hypothetical surface pressure necessary for the phase transition exceeds the actual surface pressure attainable from a solution of concentration greater than or equal to the critical micelle concentration. An increase in molecular motion with increasing temperature results in a higher degree of chain flexibility. As a result, the molecules cannot accumulate in the condensed phase form when the subphase temperature is above 19 degrees C.  相似文献   

7.
The effect of temperature on the surface phase behavior in Langmuir monolayers of monomyristoyl-rac-glycerol (MMG) at the air-water interface has been studied by film balance and Brewster angle microscopy (BAM). It is observed that the domains of the MMG monolayers formed in the coexistence region between the liquid expanded (LE) and liquid condensed (LC) phases retain their circular shape over the studied temperature range, showing a sharp contrast to the temperature-dependent monolayer morphologies of amphiphilic systems where the shape of condensed domains changes either from compact circular to fingering or from irregular or spiral to compact patterns with increasing temperature. It is concluded that the system is capable of tuning the line tension of the interface by the effect of the increase in the hydrophobic character because of dehydration of the headgroup, which imparts to the molecules the properties of similar molecules but with less hydrophilic headgroups. As a result, the domains can retain their circular shape even up to the maximum possible temperature of the phase transition.  相似文献   

8.
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.  相似文献   

9.
Recent progress in studies of the main characteristics of supramolecular assemblies formed by interfacial molecular recognition between an amphiphilic monolayer and a non-surface-active species, which is dissolved in the aqueous subphase, by complementary hydrogen bonding and/or electrostatic interaction at the air-water interface is reviewed. Systems consisting of an amphiphilic melamine-type monolayer and an pyrimidine derivative dissolved in the aqueous subphase are representative model systems for molecular recognition on the basis of complementary hydrogen bonding. Most of the studies have been performed with 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers as host component and thymine, uracil or barbituric acid as dissolved non-surface-active pyrimidine derivatives. The combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements is optimal for the characterization of the change in structure and phase behavior at the interfacial recognition process. The molecular recognition of all pyrimidine derivatives dissolved in the aqueous subphase changes drastically and in a specific way the characteristic features (pi-A isotherms, morphology of the condensed phase domains) of the 2C11H23-melamine monolayer. The small condensed phase domains of the pure 2C11H23-melamine monolayer are compact without an inner texture. The monolayers of the supramolecular 2C11H23-melamine entities with thymine or uracil form specifically well-shaped condensed phase domains with an inner alkyl chain texture essentially oriented parallel to the periphery. The completely different morphology of the 2C11H23-melamine-barbituric acid monolayers is characterized by the formation of large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. The striking differences in the main characteristics between the supramolecular entities are related to their different chemical structures: complementary hydrogen bonding of two thymine or uracil molecules by one 2C11H23-melamine molecule and a linearly extended hydrogen bonding network between 2C11H23-melamine and barbituric acid. The high values of hydrogen bonding energy obtained by quantum chemical calculations on the basis of the semi-empirical PM3 method state the high stability of the supramolecular entities. The GIXD results reveal that the formation of hydrogen-bond based superstructures between the polar head groups of the amphiphilic 2C11H23-melamine monolayer and the non-surface-active pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure of the alkyl chains. The alternative possibility to construct interfacial molecular recognition systems on the basis of acid-base interaction is demonstrated by the experimental results obtained by molecular recognition of the heptadecyl-benzamidinium chloride monolayers with dissolved non-surface-active phenylacetate ions. The formation of supramolecular assemblies causes also drastical changes of the surface features in these systems. Here, the development of a substructure in the condensed phase domains consisting of long filigree strings and the favoured formation of bilayers overgrowing the strings indicates a linearly extended amidinium-carboxylate interfacial structure of the base and acid component in alternating sequence.  相似文献   

10.
Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.  相似文献   

11.
12.
The influence of a hydrogen bond donor and acceptor in the hydrophobic part of an amphiphile on the monolayer stability at the air/water interface is investigated. For that purpose, the amide group is integrated into the alkyl chain. Eight methyl octadecanoates have been synthesized with the amide group in two orientations and in different positions of the alkyl chain, namely, CH3O2C(CH2)m NHCO(CH2)n CH3 (n + m = 14): 1 (m = 1), 3 (m = 2), 5 (m = 3), 7 (m = 14); and CH3O2C(CH2)m CONH(CH2)n CH3: 2 (m = 1), 4 (m = 2), 6 (m = 3), 8 (m = 14). The monolayers have been characterized by their pi/A isotherms, their temperature dependence and Brewster angle microscopy (BAM). Amphiphile 1 with the amide group close to the ester group (m = 1) behaves like an unsubstituted fatty acid ester, while 3, 5, and 7, with the amide group in an intermediate and terminal position, exhibit a two-phase region. The amphiphiles 2, 4, 6, and 8, with a reversed orientation of the amide group, all exhibit a two-phase region with higher plateau pressures and lower collapse pressures than those of 1, 3, 5, and 7. For 7 and 8, domains of the liquid condensed (LC) phase are visualized by BAM in the two-phase region. The liquid expanded (LE)/LC-phase transitions are all exothermic with enthalpies deltaH ranging from -31 to -12 kJ/mol. Comparison with other bipolar amphiphiles indicates that the LC phase is better stabilized by the hydroxy and dihydroxy groups than by the amide group. For model compounds of 1-4, optimized conformers in the LE and LC phases have been determined by density functional theory (DFT) calculations.  相似文献   

13.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

14.
The precipitation of calcium oxalate monohydrate (COM) at phospholipid monolayers confined to the air/water interface is observed in situ with the aid of Brewster angle microscopy. COM crystals appear as bright objects that are easily identified and quantified to assess the effects of different conditions on crystallization. Crystal precipitation was monitored at monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in liquid condensed (LC) and liquid expanded (LE) phases. Within the LC phase, higher pressures reduce the incidence of crystallization at the interface, implying that within this phase precipitation is enhanced by higher compressibility or fluidity of the monolayer. Precipitation at biphasic LC/LE and LE/gas (G) monolayers was also studied. COM appears preferentially at phase boundaries of the DPPC LC/LE and LE/G monolayers. However, when an LC/LE phase boundary is created by two different phospholipids that are phase segregated, such as DPPC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, crystal formation occurs away from the interface within the DPPC LC phase. It is suggested that COM growth at phase boundaries is preferred only when there is molecular exchange between the phases.  相似文献   

15.
16.
We studied interfacial properties of a series of methyl and ethyl esters of enantioenriched syn-2,3-dihydroxy fatty acids with different chain lengths at the air-water interface, using a Langmuir type film balance and a Brewster angle microscope (BAM). After analyzing their surface pressure (Pi)-area (A) isotherms, we inferred that these molecules existed as an E conformation in the liquid-expanded (LE) phase of monolayers, and the E conformation of molecules changed into a Z conformation during the LE-LC transition in a monolayer. BAM images evidenced the formation of elongated LC aggregates. This is possibly induced by the intermolecular hydrogen bonds, leading to the anisotropic growth of LC domains, on the basis of the FT-IR spectroscopy data. The enthalpy change of the LE-LC phase transition is considered to result from the three types of intermolecular interactions at the air-water interface during compression of these amphiphiles. These findings are discussed in terms of various physical factors that influenced intermolecular interactions and macroscopic aggregations of these amphiphiles.  相似文献   

17.
Systems consisting of an amphiphilic melamine-type monolayer and a pyrimidine derivative dissolved in the aqueous subphase are good candidates for the formation of interfacial supramolecular assemblies by molecular recognition of hydrogen-bond nonsurface-active species. In the present work, the change in the thermodynamic, phase, and structural properties as a result of molecular recognition of dissolved thymine by 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2 C11H23-melamine) monolayers is studied. The combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and grazing incidence X-ray diffraction (GIXD) measurements is optimal for the characterization of the change in structure and phase behavior at the interfacial recognition process. The molecular recognition of the nonsurface-active thymine dissolved in aqueous subphase changes drastically the characteristic features (surface pressure-area isotherms, morphology of the condensed phase domains) of the 2 C11H23-melamine monolayer. It is demonstrated that the kinetics of the recognition process affect largely the main characteristics (phase behavior, morphology of the condensed phase domains) of the interfacial system. The monolayers of 2 C11H23-melamine-thymine assemblies form dumbbell-shaped condensed phase domains not yet observed in other Langmuir monolayers so far. GIXD results show that the molecular recognition of thymine causes only quantitative changes in the two-dimensional lattice structure. Complementary hydrogen bonding of two thymine molecules by one 2 C11H23-melamine molecule is concluded from the chemical structure of both components. Additional information about the nature of the hydrogen bonding on the basis of supramolecular assemblies is obtained by using the quantum chemical PM3 approximation. Energy and lengths of the hydrogen bonds of the optimized thymine-2 C11H23-melamine-thymine structure are calculated.  相似文献   

18.
2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ~6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.  相似文献   

19.
Surface phase behavior of di-n-tetradecyl hydrogen phosphate, DTP, has been studied by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM) at different temperatures. A generalized phase diagram, which shows a triple point for gas (G), liquid-expanded (LE) and liquid-condensed (LC) phases at about 32 degrees C, is constructed for the amphiphile. Below the triple point, a first-order G-LC phase transition has been shown to occur, whereas a first-order G-LE phase transition followed by another first-order LE-LC transition has been found to take place at a temperature above the triple point. The amphiphile shows the fingering LC domains with uniform brightness indicating the presence of untilted molecules. The domain shapes are independent of the change in temperature and compression rate. The existence of similar fingering domains over a wide range of temperature is rather uncommon in the monolayer systems and is considered to be due to the restricted movement of the molecules incorporating into the LC phase. Because the two-alkyl chains are directly attached to two covalent bonds of the phosphate head group, the rearrangement of the molecules, which is an essential condition for the circular domain formation, needs the movement of the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes fingering domains, which are independent of external variables.  相似文献   

20.
The adsorption and micellar behavior of diethylene glycol mono-n-tetradecyl ether (C14E2), sodium 3,6,9,12-tetraoxaoctacosanoate (TOOCNa), and their mixture at a 1:1 molar ratio have been studied by film balance, Brewster angle microscopy (BAM), and surface tensiometry at different temperatures. The monolayers of pure C14E2 and its mixture with TOOCNa show a first-order phase transition with a conspicuous cusp point in their respective adsorption isotherms. This is further confirmed by the observation of bright two-dimensional condensed phase domains visualized by BAM just after the appearance of the phase transition. It is interesting to note here that for C14E2, condensed domains are observed up to 19 degrees C, while in the mixed system, they are observed up to 22 degrees C. To understand why in the mixed system the domains are observed at higher temperatures than for pure C14E2, we have measured the temperature dependency of the equilibrium surface tension at > or = cmc (gammacmc) values of both the pure and the mixed systems. The gammacmc values of pure C14E2 remain almost constant, while those of pure TOOCNa and its mixture with C14E2 decrease appreciably with increasing temperature. It is concluded that higher degree of dehydration of the ethylene oxide (EO) chain reduces the head-group size of TOOCNa, which outweighs the combined effect of the repulsive interactions between the head-groups and the thermal motion of the adsorbed molecules. Furthermore, C14E2 being inserted into the TOOCNa monolayer reduces the electrostatic repulsions between the charged heads, and consequently, the adsorbed monolayers attain closer molecular packing. As a result, the gammacmc values of both pure TOOCNa and its mixture with C14E2 decrease with increasing temperature. This facilitates the formation of condensed domains in the mixed system at higher temperatures, whereas none of the individual members can show any indicative feature of phase transition under the same experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号