首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
63Ni radiotracer diffusion in a well-compacted nanocrystalline (grain size d 80 to 100 nm) -Fe–40wt%Ni alloy was measured by the serial sectioning technique in an extended temperature range from about 610 to 1010 K. Since the material microstructure reveals two different length scales with nano-size grains forming micrometer-size clusters (or agglomerates), three main diffusion paths determine the diffusion behavior: the nanocrystalline grain interior, the nanocrystalline grain boundaries (GB), and the inter-agglomerate interfaces. The systematics of diffusion in a compacted nanostructured material with such a bimodal distribution of interface characteristics was elaborated and the experimental data were analyzed in dependence on the diffusion regime. The absolute values and the Arrhenius parameters of Ni GB diffusion in the nano--Fe–40wt%Ni alloy (D 0 = 9.3 × 10–4 m2 s–1 and Q = 177 kJ/mol) are similar to the Ni GB diffusivity in coarse-grained poly-crystalline -Fe. Accordingly, the nanocrystalline GBs are concluded to have quasi-equilibrium structures, particularly because of a pronounced grain growth (from about 30 to about 100 nm) during the production stage of the nanomaterial. In contrast, the inter-agglomerate interfaces, which present the fastest diffusion path in the present investigation (D 0 = 1.9 × 10–3 m2 s–1 and Q = 134 kJ/mol), are likely to be in a non-equilibrium state due to specific features of the applied powder metallurgical process.  相似文献   

2.
Nanosized titanium dioxide (TiO2) powder was prepared by a laser-induced pyrolysis. Specific surface area of the as-grown powder measured by BET method was 109 m2/g. The grain size (14.5 nm) estimated from these data coincides well with the crystallite size (12.3 nm) determined by XRD measurements. The average grain size (∼35 nm) obtained from the subsequent SEM measurements refers to considerable agglomeration of nanoparticles. Raman spectroscopy has been used to investigate the structural properties of TiO2 nanopowder and its anatase structure is confirmed. The blueshift and broadening of the lowest frequency Eg Raman mode at temperature range ∼25–550 K have been analyzed using a phonon-confinement model. Dominant influence of the strong anharmonic effect at higher temperatures was demonstrated. PACS 81.07.Wx; 78.30.-j; 63.22.+m  相似文献   

3.
An investigation is made of the diffusion of antimony through the bulk and along grain boundaries in copper bicrystals containing a symmetric 〈100〉 misorientation boundary with misorientation angles from 20 to 37.2°. The bicrystals are grown by the method of horizontal zone recrystallization. The temperature range for these studies is 480–580 °C, where the solubility of Sb in Cu is about 6 atomic % and practically temperature-independent. The concentration profiles are obtained by x-ray spectral microanalysis, and the grain-boundary diffusion parameters are computed by the method of Whipple and Suzuoka. The orientation dependence of the triple product P=sδD b (where s is the segregation coefficient, δ the width of the grain boundary, and D b the grain-boundary diffusion coefficient) is nonmonotonic, with a maximum for the special ∑5 misorientation boundary (36.9°). The effective activation energy for grain-boundary diffusion ranges from ∼70 kJ/mol for ∑5 to140 kJ/mol for general boundaries. Fiz. Tverd. Tela (St. Petersburg) 39, 1153–1157 (July 1997)  相似文献   

4.
Two kinds of reactively evaporated titanium nitride films with columnar (B 0 films) and fine-grained film structure (B + films) have been examined as diffusion barriers, preventing the silicon diffusion in silicon devices. The silicon diffusion profiles have been investigated by 2 MeV 4He+ Rutherford backscattering spectrometry (RBS) after annealing at temperatures up to 900° C, in view of application of high-temperature processes. The diffusivity from 400 to 900° C: D (m2 s–1)=2.5×10–18 exp[–31 kJ/mol/(RT)] in B 0 layers and D (m2 s–1)=3×10–19 exp[–26 kJ/mol/(RT) in B + TiN layers. The diffusivities determined correspond to grain boundary diffusion, the difference being due to the different microstructure. The very low diffusivity of silicon in B + TiN layer makes it an excellent high-temperature barrier preventing silicon diffusion.  相似文献   

5.
A. E. Dorokhov 《JETP Letters》2010,92(10):707-719
Recently, the BABAR collaboration reported the measurements of the photon-pion transition form factor F πγγ*(Q 2), which are in strong contradiction to the predictions of the standard factorization approach to perturbative QCD. In the present work, based on a nonperturbative approach to the QCD vacuum and on rather universal assumptions, we show that there exist two asymptotic regimes for the pion transition form factor. One regime with the asymptotic behavior F πγ*γ(Q 2) ∼ 1/Q 2 corresponds to the result of the standard QCD factorization approach, while other violates the standard factorization and leads to asymptotic behavior as F πγ*γ(Q 2) ∼ ln(Q 2)/Q 2. Furthermore, considering specific nonlocal chiral quark models, we find the region of parameters, where the existing CELLO, CLEO and BABAR data for the pion transition form factor are successfully described.  相似文献   

6.
Rutile‐structured nanocrystalline tin dioxide (SnO2) powder was synthesized by the chemical precipitation method using the precursor SnCl2• 5H2O. The SnO2 powder was annealed at different temperatures, namely, 600, 800 and 1000 °C. Micro‐Raman spectra were recorded for both the as‐grown and annealed SnO2 nanocrystalline samples. Micro‐Raman spectral measurements on the SnO2 nanoparticle show the first‐order Raman modes A1g (633 cm−1), E1g (475 cm−1) and B2g (775 cm−1), indicating that the grown SnO2 belongs to the rutile structure. The first‐order A1g mode is observed as an intense band, whereas the other two modes show low intensity. The full width at half‐maximum and band area of the Raman lines of SnO2 nanoparticle annealed at various temperatures were calculated. The effect of high‐temperature annealing on the vibrational modes of SnO2 was studied. The optical image of SnO2 nanocrystalline material was used to understand the surface morphology effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The diffusion of nitrogen in α-Hf was studied in the temperature range of (823–1123) K using the ion implantation and nuclear resonance techniques. The measurements show that the diffusion coefficients follow the Arrhenius behavior D(T)=D 0exp (−Q/RT) with D 0=(5.5±2.1)×10−7 m2/s and Q=(228±1) kJ/mol. A comparison of the present results with the previous one is done.  相似文献   

8.
Summary It is shown that the behaviour of the temperature dependence of the critical current in polycrystalline thin films of high-T c superconductors depends crucially on the assumption made concerning the nature of the intergranular material. The usual assumption of a superconductor-insulator-superconductor (=SIS) ?sandwich? between each grain leads to a crossover fromI c∼(1−T/T c) toI c∼(1−T/T c)3/2, for temperatures nearT c (whereI c is the critical current,T the absolute temperature, andT c the superconducting transition temperature). Instead, for a superconductor-normal metal-superconductor (=SNS) sandwich the dependenceI c∼(1−T/T c)2 is found for all temperatures. Consideration is given to the effect of self-magnetic field on the analysis. The comparison between expressions for continuous and granular systems is extended. Due to the relevance of its scientific content, this paper has been given priority by the Journal Direction.  相似文献   

9.
Ball milled nanocrystalline AlMg4.8 powder was investigated in terms of hardening and thermal stability. The validity of the Hall–Petch relation was confirmed down to the minimum grain size of ~44 nm. Prolonged milling in the range of the minimum grain size still increased the hardness. This development is discussed in terms of contamination effects and the influence of full and partial dislocations. Concerning thermal stability, recovery processes occur in the range of 100–230°C, whereas substantial grain growth starts at a temperature of ~250°C. The enthalpy release for recovery was detected to be ~39 J mol?1 and ~208 J mol?1 for grain growth. Dynamic strain ageing was indicated by an activation energy for recovery of Q?~?120 kJ mol?1. The activation energy of grain growth was calculated by means of the Kissinger theory (Q?=?200–210 kJ mol?1) and using the results of static grain growth (Q?=?204 kJ mol?1).  相似文献   

10.
Given an amalgam of groups then every quantum logicQ 0 = (L 0,M 0) (L 0 is aσ-orthomodular poset,M 0 is a full set of states on it) satisfying some reasonable conditions can be embedded in a quantum logicQ = (L, M), in which (1) all the automorphisms ofL form a group ∼-G 1, (2) all the automorphisms ofM form a group ∼-G 2, and (3) all the symmetries ofQ form a group ∼-G 0. The quantum logic of all closed subspaces of a Hilbert spaceH and all its measures satisfies the conditions required fromQ 0; hence, enlarging it, one can obtain “anything.”  相似文献   

11.
The distinctive features of the low-frequency internal friction Q −1(T) of (Cu-Sn)-Nb composites at high temperatures (up to 400°C) are investigated for strains in the range 10−5–10−4. Considerable hysteresis of Q −1(T) in the heating-cooling cycle is recorded, including the presence of a minimum at ∼175°C when the sample is heated to 400°C and two peaks P 2 (at 280°C) and P 1 (at ∼100°C) when the sample is cooled from 400°C. The activation energy of the anomalous internal friction background (up to 175°C), the oxygen diffusion parameters, and the oxygen concentration in the niobium fibers (all of which govern the peak P 2) are calculated, and the value and temperature dependence of the yield point of the bronze matrix (which govern the peak P 1) are estimated. Zh. Tekh. Fiz. 68, 114–117 (November 1998)  相似文献   

12.
Hydrogen atoms are encapsulated in octasilsesquioxane, R(SiO1.5)8, by irradiation with γ-rays at room temperature. In deca- and dodecasilsesquioxane, hydrogen atoms are encapsulated by irradiation at 77 K. The thermal decay of the encapsulated hydrogen is well described by a single-exponential function. The excitation energies of the decay are 110–117, 50.4, and 55.6 kJ/mol for the hydrogen atoms in Q8M8, Q10M10, and Q12M12, respectively. Theg-values and hyperfine splitting (hfs) constants of the hydrogen atoms in R(SiO1.5)8 are dependent on the substituents in the corners of the polyhedra, R. Theg-values are independent of the temperatures, while the hfs constants increase as the temperature decreases. Theg-values of the hydrogen atoms in a large encapsulating cavity decrease with increasing cavity size and approach 2.0023. The temperature dependence of the hfs constants for the hydrogen atoms in Q10M10 or Q12M12 suggests that the hydrogen atoms are localized within the encapsulating cages at low temperatures.  相似文献   

13.
The light-emitting properties of cubic silicon carbide films grown by vacuum vapor phase epitaxy on Si(100) and Si(111) substrates under conditions of decreased growth temperatures (T gr ∼ 900–700°C) have been discussed. Structural investigations have revealed a nanocrystalline structure and, simultaneously, a homogeneity of the phase composition of the grown 3C-SiC films. Photoluminescence spectra of these structures under excitation of the electronic subsystem by a helium-cadmium laser (λexcit = 325 nm) are characterized by a rather intense luminescence band with the maximum shifted toward the ultraviolet (∼3 eV) region of the spectral range. It has been found that the integral curve of photoluminescence at low temperatures of measurements is split into a set of Lorentzian components. The correlation between these components and the specific features of the crystal structure of the grown silicon carbide layers has been analyzed.  相似文献   

14.
The relaxations of rubbing-induced birefringence (RIB) in several glass-forming polymers, including polycarbonate and polystyrene (PS) derivatives with various modifications to the phenyl ring side group, are studied. Significant relaxations of RIB are observed at temperatures well below the glass transition temperature T g . The relaxation times span a wide range from ∼ 10 s to probably geological time scale. Physical aging effects are absent in the RIB relaxations. The model proposed for the interpretation of RIB in PS describes well the RIB relaxations in all the polymers investigated here. The energy barriers are of the order of a few hundred kJ/mol and decrease with decreasing temperature, in opposition to the trend of Vogel-Fulcher form for polymer segmental relaxations above T g . The relaxation behaviors of different polymers are qualitatively similar but somewhat different in quantitative details, such as in the values of the saturated birefringence, the shape of the initial barrier density distribution functions, the rates of barrier decrease with decreasing temperature, and the dependence of relaxation times on temperature and parameter , etc. The RIB relaxations are different from any of the other relaxations below T g that have been reported in the literature, such as dielectric relaxations or optical probe relaxations. A microscopic model for the relaxations of RIB is much desired.  相似文献   

15.
The behavior of the running coupling constant α s (Q 2) phenomenologically parameterized in the region of Q < 1 GeV is considered within the framework of the Poincare-covariant quark model in a variety of regimes. An analysis was carried out for pseudoscalar and vector mesons with the lepton masses and decay constants (obtained by the model calculations) required to match their experimental counterparts. It shows that the constant α s is likely to behave with αcrit = α s (Q 2 = 0) ∼ 0.667 − 0.821 in the case of a frozen regime and αcrit =0.300 − 0.692 for peaked curves, which follows from the experimental values of the leptonic decay constants and masses.  相似文献   

16.
The kinetics of the thermal polymerization of perfluoromethylvinyl ether (PFMVE) is studied at pressures of 3–13 kbar (300–1300 MPa) and temperatures of 80–260°C. The activation energy (E act = (76 ± 3) kJ/mol) and activation volume (ΔV0 = −(27 ± 2) cm3/mol) for the overall polymerization rate are determined. The inhibition method is used to estimate the activation energy of thermal initiation (E in = (79.9 ± 3) kJ/mol). The quantity E p − (1/2)E t was calculated to be 36.6 ± 3 kJ/mol. The limiting polymerization temperature was evaluated: T lim = (180 ± 3)°C. A mechanism of PFMVE polymerization is proposed on the assumption that the reaction is bimolecular.  相似文献   

17.
High spins states in 99Rh were populated via the 66Zn(37Cl, 2p2n)99Rh reaction at an incident beam energy of 130 MeV. Seventeen new transitions have been observed in the present study and the level scheme has now been extended up to a spin of J∼ 25ħ and an excitation energy of about E x∼ 10 MeV. The observation of a positive parity E2 cascade based on the 9/2+ isomeric level is suggestive of collective behaviour in this nucleus up to high spins. Spherical shell model (within restricted model space) and Cranked shell model calculations were performed to obtain an insight into the observed level structure. The new collective band observed up to a spin of J∼ 25ħ is suggested to be based on (πg 9/2 3) ⊗ (νg 7/2 2) quasi-particle excitations. Received: 12 July 1999 / Revised version: 14 September 1999  相似文献   

18.
The nanocrystalline material of 15 mol% Gd-doped ceria (Ce0.85Gd0.15O2−δ ) was prepared by citrate auto ignition method. The electrical study and dielectric relaxation technique were applied to investigate the ionic transport process in this nanocrystalline material with an average grain size of 13 nm and the dynamic relaxation parameters are deduced in the temperature range of 300–600°C. The ionic transference number in the material is found to be 0.85 at 500°C at ambient conditions. The oxygen ionic conduction in the nanocrystalline Ce0.85Gd0.15O2−δ material follows the hopping mechanism. The grain boundary relaxation is found to be associated with migration of charge carriers. The frequency spectra of modulus M″ exhibited a dielectric relaxation peak corresponding to defect associates (Gd-Vo\blacksquare \blacksquare)\blacksquare(\mathrm{Gd}\mbox{-}\mathrm{V}_{\mathrm{o}}^{_{_{{\blacksquare\,\blacksquare}}}})^{_{_{{\blacksquare}}}}. The material exhibits very low values of migration energy and association energy of the oxygen vacancies in the long-range motion, i.e., 0.84 and 0.07 eV, respectively.  相似文献   

19.
The behavior of the thermal conductivity k(T) of bulk faceted fullerite C60 crystals is investigated at temperatures T=8–220 K. The samples are prepared by the gas-transport method from pure C60, containing less than 0.01% impurities. It is found that as the temperature decreases, the thermal conductivity of the crystal increases, reaches a maximum at T=15–20 K, and drops by a factor of ∼2, proportional to the change in the specific heat, on cooling to 8 K. The effective phonon mean free path λ p, estimated from the thermal conductivity and known from the published values of the specific heat of fullerite, is comparable to the lattice constant of the crystal λ pd=1.4 nm at temperatures T>200 K and reaches values λp∼50d at T<15 K, i.e., the maximum phonon ranges are limited by scattering on defects in the volume of the sample in the simple cubic phase. In the range T=25−75 K the observed temperature dependence k(T) can be described by the expression k(T)∼exp(Θ/bT), characteristic for the behavior of the thermal conductivity of perfect nonconducting crystals at temperatures below the Debye temperature Θ (Θ=80 K in fullerite), where umklapp phonon-phonon scattering processes predominate in the volume of the sample. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 651–656 (25 April 1997)  相似文献   

20.
Phase composition, defect substructure, and mechanical properties of the Ti-Si-N coating deposited on metal and ceramic-metal substrates by electroarc sputtering of the Ti-Si composite cathode in an ionized nitrogen atmosphere are investigated by the methods of modern materials science. It is established that coatings so formed with a thickness of ∼1–3 μm are superhard (Hv ∼ 50 GPa), and have the nanocrystalline structure (with crystalline sizes D = 7 nm) based on titanium nitride δ-TiN. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 46–51, February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号