首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have conducted a systematic study on the effects of post rubbing annealing on the relaxation of rubbing-induced birefringence of polystyrene. It is found that annealing at T0 only affects the relaxation up to T0 + TLag, where TLag is proportional to the logarithm of the annealing time tA. A theoretical model based on the distribution of relaxation times due to the individual birefringence elements is proposed. To remove its contribution to the net birefringence each element must overcome an energy barrier E = (317 + 1.17ξ)×103 J/mol, and therefore must have a characteristic relaxation time τ which depends on temperature T and a barrier height which ranges from 340.4 kJ/mol to 445.7 kJ/mol. The relaxation of birefringence is expressed by the equation NB(T, t) = N(ξ)e-t/τ(T,ξ)dξ, in which both the relaxation time τ(T,ξ) and the distribution function N(ξ) can be extracted from experimental data. The predictions of the model agree well with all the experimental results presented in this work. The differences and similarities of the relaxation of birefringence with respect to the physical aging of quenched PS are discussed. In particular, similarities in terms of the general temperature lag phenomena are noted.  相似文献   

2.
We examine by molecular dynamics simulations the relaxation of polymer-solvent mixtures close to the glass transition. The simulations employ a coarse-grained model in which polymers are represented by bead-spring chains and solvent particles by monomers. The interaction parameters between polymer and solvent are adjusted such that mixing is favored. We find that the mixtures have one glass transition temperature T g or critical temperature T c of mode-coupling theory (MCT). Both T g and T c (> T g decrease with increasing solvent concentration . The decrease is linear for the concentrations studied (up to = 25%. Above T c we explore the structure and relaxation of the polymer-solvent mixtures on cooling. We find that, if the polymer solution is compared to the pure polymer melt at the same T, local spatial correlations on the length scale of the first peak of the static structure factor S(q) are reduced. This difference between melt and solution is largely removed when comparing the S(q) of both systems at similar distance to the respective T c. Near T c we investigate dynamic correlation functions, such as the incoherent intermediate scattering function (t), mean-square displacements of the monomers and solvent particles, two non-Gaussian parameters, and the probability distribution P(ln r;t) of the logarithm of single-particle displacements. In accordance with MCT we find, for instance, that (t) obeys the time-temperature superposition principle and has relaxation times which are compatible with a power law increase close (but not too close) to T c. In divergence to MCT, however, the increase of depends on the wavelength q, small q values having weaker increase than large ones. This decoupling of local and large-length scale relaxation could be related to the emergence of dynamic heterogeneity at low T. In the time window of the relaxation an analysis of P(ln r;t) reveals a double-peak structure close to T c. The first peak correponds to “slow” particles (monomer or solvent) which have not moved much farther than 10% of their diameter in time t, whereas the second occurs at distances of the order of the particle diameter. These “fast” particles have succeeded in leaving their nearest-neighbor cage in time t. The simulation thus demonstrates that large fluctuations in particle mobility accompany the final structural relaxation of the cold polymer solution in the vicinity of the extrapolated T c.  相似文献   

3.
Thermally stimulated depolarization currents, TSDC, wide-angle X-ray scattering, WAXS, differential scanning calorimetry, DSC, and polarized light optical microscopy, PLOM, have been used to examine poly(L-lactide)-b -poly( -caprolactone) diblock copolymers in a wide composition range. Both components are crystallizable and the miscibility in the amorphous phase has been determined from the behavior of the primary relaxations which are the dielectric manifestation of the glass transition, and also from the superstructural morphology revealed by PLOM and the compositional dependence of the melting points as determined by DSC. Distinct segmental mobilities in the amorphous phase which can be well resolved by TSDC are present; the mode of the slower component shifts to lower temperatures as the PCL content increases while the glass transition of neat PCL is present for all compositions. A relaxation times bimodal distribution is apparent for PCL-rich copolymers. The composition dependence of the multiple glass transitions detected in these weakly segregated copolymers are predicted by the self-concentration model for a miscible blend made of components with a large Tg contrast.  相似文献   

4.
Fluorescence intensity measurements of chromophore-doped or -labeled polymers have been used for the first time to determine the effects of decreasing film thickness on glass transition temperature, T g, the relative strength of the glass transition, and the relative rate of physical aging below T g in supported, ultrathin polymer films. The temperature dependence of fluorescence intensity measured in the glassy state of thin and ultrathin films of pyrene-doped polystyrene (PS), poly(isobutyl methacrylate) (PiBMA), and poly(2-vinylpyridine) (P2VP) differs from that in the rubbery state with a transition at T g. Positive deviations from bulk T g are observed in ultrathin PiBMA and P2VP films on silica substrates while substantial negative deviations from bulk T g are observed in ultrathin PS films on silica substrates. The relative difference in the temperature dependences of fluorescence intensity in the rubbery and glassy states is usually reduced with decreasing film thickness, indicating that the strength of the glass transition is reduced in thinner films. The temperature dependence of fluorescence intensity also provides useful information on effects of processing history as well as on the degree of polymer-substrate interaction. In addition, when used as a polymer label, a mobility-sensitive rotor chromophore is demonstrated to be useful in measuring relative rates of physical aging in films as thin as 10 nm. Received 21 August 2001  相似文献   

5.
The viscosity of an amorphous polymeric solid above its glass transition [T g (T,P)] increases as the temperature of the solid is decreased or the pressure is increased. Under changes in temperature or pressure, molecular subunits in the polymeric solid undergo configurational changes. Such changes or relaxations have a distribution of relaxation strengths and times. As the solid is cooled or as the hydrostatic pressure on the solid is increased, the relaxation strengths increase and the relaxation times increase. These changes in relaxation or dynamic properties are very dramatic as the empirical T g is approached. Near T g the polymeric solid is no longer in volume equilibrium; continued cooling or pressuring at a time rate faster than the average relaxation time will produce a polymeric glass. This glass is a nonequilibrium, amorphous solid. If the glass is held at a fixed temperature and pressure very close to, but below, T g , the volume of the glass will be observed to relax to its equilibrium value. For temperatures and pressures well below T g , equilibrium is a much more conjectural concept since the relaxation times become extremely long. It has been proposed1,2 that there is a characteristic temperature T g at which an amorphous polymer undergoes a second-order transition to an equilibrium glass with zero configurational entropy (i.e., a noncrystallizable solid).  相似文献   

6.
The effect of confinement in the segmental relaxation of polymers is considered. On the basis of a thermodynamic model we discuss the emerging relevance of the fast degrees of freedom in stimulating the much slower segmental relaxation, as an effect of the constraints at the walls of the amorphous regions. In the case that confinement is due to the presence of crystalline domains, a quasi-Poissonian distribution of local constraining conditions is derived as a result of thermodynamic equilibrium. This implies that the average free-energy barrier F for conformational rearrangement is of the same order of the dispersion of the barrier heights, ( F) , around F . As an example, we apply the results to the analysis of the -relaxation as observed by dielectric broad-band spectroscopy in semicrystalline poly(ethylene terephthalate) cold-crystallized from either an isotropic or an oriented glass. It is found that in the latter case the regions of cooperative rearrangement are significantly larger than in the former.  相似文献   

7.
Pulsed laser deposition (PLD) at 248 nm in ultra high vacuum was used to produce thin poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA) films. The ablation and deposition mechanisms were found to be similar in both systems. Having the same backbone, these polymers differ in the size of their polar side groups leading to changes in their dynamics. Studies of the relaxation processes were performed using mechanical torsion and bending spectroscopy by means of a double-paddle oscillator (DPO) and an in-situ plasma plume excited reed (PPXR), respectively. A strong increase of the mechanical damping was observed during annealing of the polymer films well above the glass transition temperature T g, while in-situ X-ray measurements did not reveal any structural changes. For PEMA, the glass transition temperature T g=335 K and the main absorption maximum appear at lower temperatures compared to PMMA (T g=380 K), allowing one to measure the mechanical properties in a much wider range above T g.  相似文献   

8.
We present a comprehensive study of gold nanoparticle embedding into polystyrene (PS) surfaces at temperatures ranging from T g + 8 K to T g − 83 K and times as long as 105 minutes. This range in times and temperatures allows the first concurrent observation of and differentiation between surface and bulk behavior in the 20nm region nearest the free surface of the polymer film. Of particular importance is the temperature region near the bulk glass transition temperature where both surface and bulk processes can be measured. The results indicate that for the case of PS, enhanced surface mobility only exists at temperatures near or below the bulk T g value. The surface relaxation times are only weakly temperature dependent and near T g , the enhanced mobility extends less than 10nm into the bulk of the film. The results suggest that both the concept of a “surface glass transition” and the use of glass transition temperatures to measure local mobility near interfaces may not universally apply to all polymers. The results can also be used to make a quantitative connection to molecular dynamics simulations of polymer films and surfaces.  相似文献   

9.
We present a detailed study of free polymer surfaces and their effects on the measured glass transition temperature (Tg) of thin polystyrene (PS) films. Direct measurements of the near-surface properties of PS films are made by monitoring the embedding of 10 and 20 nm diameter gold spheres into the surface of spin-cast PS films. At a temperature T = 378K( > Tg), the embedding of the spheres is driven by geometrical considerations arising from the wetting of the gold spheres by the PS. At temperatures below Tg ( 363K < T < 370K), both sets of spheres embed 3-4 nm into the PS films and stop. These studies suggest that a liquid-like surface layer exists in glassy PS films and also provide an estimate for the lower bound of the thickness of this layer of 3-4 nm. This qualitative idea is supported by a series of calculations based upon a previously developed theoretical model for the indentation of nanoscale spheres into linear viscoelastic materials. Comparing data with simulations shows that this surface layer has properties similar to those of a bulk sample of PS having a temperature of 374 K. Ellipsometric measurements of the Tg are also performed on thin spin-cast PS films with thicknesses in the range 8nm < h < 290nm. Measurements are performed on thin PS films that have been capped by thermally evaporating 5 nm thick metal (Au and Al) capping layers on top of the polymer. The measured Tg values (as well as polymer metal interface structure) in such samples depend on the metal used as the capping layer, and cast doubt on the general validity of using evaporative deposition to cover the free surface. We also prepared films that were capped by a new non-evaporative procedure. These films were shown to have a Tg that is the same as that of bulk PS (370±1 K) for all film thicknesses measured (> 7 nm). The subsequent removal of the metal layer from these films was shown to restore a thickness-dependent Tg in these samples that was essentially the same as that observed for uncapped PS films. An estimate of the thickness of the liquid-like surface layer was also extracted from the ellipsometry measurements and was found to be 5±1 nm. The combined ellipsometry and embedding studies provide strong evidence for the existence of a liquid-like surface layer in thin glassy PS films. They show that the presence of the free surface is an important parameter in determining the existence of Tg reductions in thin PS films.  相似文献   

10.
(NH4)3VO2F4 crystals were grown, and polarization-optical studies and measurements of birefringence were conducted on crystal plates of various cuts over a wide temperature range. Phase transitions were detected at temperatures T 1↑ = 417 K, T 3↑ = 211 K, and T 4↑ = 205 K (on heating) and at T 1↓ = 413 K, T 3↓ = 210 K, and T 4↓ = 200 K (on cooling). The transitions are accompanied by anomalies of the birefringence and by twinning. The sequence of changes in the phase symmetry is assumed to be as follows: cubic Fm m ↔ orthorhombic Immm (I2221) ↔ monoclinic 112/m) ↔ triclinic P . Near temperatures T 2 ≈ 240–250 K, an additional anomaly of the birefringence is observed, with the crystal retaining the orthorhombic symmetry. Original Russian Text ? S.V. Mel’nikova, A G. Kocharova, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 3, pp. 562–564.  相似文献   

11.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

12.
We found, through extensive experimental studies, that the physical aging effects are absent in the relaxation of rubbing-induced birefringence (RIB) in polystyrene (PS), and the relaxation involves very small length scale. A phenomenological model based on individual birefringence elements is proposed for the RIB relaxation. The relaxation times (RTs) of the elements are found to be independent of the thermal or stress history of the samples, either before or after the formation of the birefringence. The RTs are also independent of the molecular weight, rubbing conditions, and film thickness, while the RTs distribution function does depend on the molecular weight and rubbing conditions. The model provides quantitative interpretations that agree very well with all the reported experimental results, and sheds important light on the novel behaviors of the RIB relaxation. The absence of physical aging effects is probably due to the combined effects of small length scale of the RIB relaxation, and the accelerated aging speed in the near surface region in which the RIB concentrates.  相似文献   

13.
An unparticle with scaling dimension has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter , the ratio of pressure to energy density, is given by providing a new form of energy in our universe. In an expanding universe, the unparticle energy density evolves dramatically differently from that for photons. For , even if at a high decoupling temperature T D is very small, it is possible to have a large relic density at present photon temperature T γ 0, large enough to play the role of dark matter. We calculate T D and using photon–unparticle interactions for illustration.  相似文献   

14.
The /EC decay of 189m, gPb has been studied at the ISOLDE facility using nuclear spectroscopy and in-source laser spectroscopy. A level scheme of 189Tl has been built from - coincidence relationships and information on the feeding of some excited levels of 189Tl provided by the hyperfine spectra obtained from laser ionization. The half-lives of both the 13/2+ and 3/2- 189Pb isomers have been estimated to be T 1/2 = 50±3 s and T 1/2 = 39±8 s, respectively. Calculations have been performed for different oblate and prolate nuclear deformations using an axial-rotor coupled to one-quasiparticle model, a structure has been suggested for the low-lying levels of the 189Tl nucleus.  相似文献   

15.
We report the charge state modification effects at the Mn site on the ground state properties of colossal magnetoresistive manganites. Ta5+ substitution results in an appreciable increase in the lattice parameters and unit cell volume due to increased Mn3+ concentration. The ferromagnetic-metallic ground state modifies to a cluster glass insulator for . The reduction in the transition temperatures with increasing x is ∼39 K/at.%. Besides the modification of majority carrier concentration due to increased Mn3+ concentration and enhanced local structural effects, the local electrostatic potential of the substituent seems to contribute to the unusually strong reduction of the transition temperatures of the compounds. Thermo magnetic irreversibility just below Curie temperature (Tc), non-saturation of magnetization, two distinct magnetic transitions in ac susceptibility in an appropriate static field: close to Tc and other at low temperature (the spin freezing temperature (Tg)) and non-stationary dynamics with a characteristic maximum in the magnetic viscosity close to Tg confirm a cluster glass state for . These results find additional support from a linear low temperature magnetic specific heat of x = 0.10 with a characteristic broad maximum close to Tg.  相似文献   

16.
We have performed detailed resistivity measurements as a function of temperature in the range from 12 to 300 K on oxygen loaded C60 films. We observe that two ordering phase transitions (i.e.,T 0=260 K andT g =90 K) are present in (T), which, in addition, strongly depends on the oxygen content. We find a decrease of both ordering temperatures with increasing oxygen concentrations. The mechanisms of oxygen diffusion are greatly enhanced in the ordered phase on heating. Finally, the transition to a glassy state atT g is detected as a point of reversibility of the resistivity curve as a function of temperature.  相似文献   

17.
It has been shown that the currently used method for calculating the temperature range of δTg in the glass transition equation qτg = δTg as the difference δTg = (T12T13) results in overestimated values, which is explained by the assumption of a constant activation energy of glass transition in deriving the calculation equation (T12 and T13 are the temperatures corresponding to the logarithmic viscosity values of logη = 12 and logη = 13). The methods for the evaluation of δTg using the Williams–Landel–Ferry equation and the model of delocalized atoms are considered, the results of which are in satisfactory agreement with the product qτg (q is the cooling rate of the melt and τg is the structural relaxation time at the glass transition temperature). The calculation of τg for inorganic glasses and amorphous organic polymers is proposed.  相似文献   

18.
In a hydrodynamic model, we have studied J/ψ production in Au+Au/Cu+Cu collisions at RHIC energy, GeV. At the initial time, J/ψ’s are randomly distributed in the fluid. As the fluid evolves in time, the free streaming J/ψ’s are dissolved if the local fluid temperature exceeds a threshold temperature T J/ψ . Sequential melting of charmonium states (χ c , ψ and J/ψ), with melting temperatures , T J/ψ ≈2T c and feed-down fraction F≈0.3, explains the PHENIX data on the centrality dependence of J/ψ suppression in Au+Au collisions. J/ψ p T spectra and the nuclear modification factor in Au+Au collisions are also well explained in the model. The model however overpredicts the centrality dependence of J/ψ suppression in Cu+Cu collisions by 20–30%. The J/ψ p T spectra are underpredicted by 20–30%. The model predicts that in central Pb+Pb collisions at LHC energy,  GeV, J/ψ’s are suppressed by a factor of ∼10. The model predicted a J/ψ p T distribution in Pb+Pb collisions at LHC is similar to that in Au+Au collisions at RHIC.  相似文献   

19.
Dynamical spin fluctuations in SrCr8–xGa4+xO19 a frustrated spin system on a kagomé lattice, is examined by the longitudinal field muon spin relaxation technique. This system shows a spin-glass (SG)-like cusp in the susceptibility atT g=3.5(2) K. The slowing down of Cr spin fluctuations is found to occur over a very wide temperature rangeT g<T<30T g. AsT/T g 0 these fluctuations remain without static polarization (order parameter). Such strong fluctuations belowT g have not been observed before in a conventional SG system.  相似文献   

20.
Amorphous polymers are viscoelastic materials. When they are subjected to dynamical loads, their behavior can be modeled by transform functions of stress and strain in the complex plane. In our work, a model based on the fractional calculus concept is proposed in order to predict the viscoelastic behavior of polymethylmethylacrylate (PMMA) over a wide temperature range between (Tg -190°C) and (Tg +15°C). The extended fractional solid model is shown to be capable of describing experimentally observed dynamic viscoelastic behavior over a wide temperature range, including multiple relaxations, using a limited number of free parameters. Structural recovery of PMMA was studied by dynamic mechanical spectrometry, and its effect on the different parameters is also discussed. Furthermore, from the fractional differential and fractional integral formulations. most of the relevant viscoelastic functions that quantify the degree of molecular mobility of amorphous polymers, like E(t), E?(τ). and H(t), can be derived analytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号