首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A time-evolution of a slightly rarefied monoatomic gas, namely a gas for small Knudsen numbers, which is perturbed slowly and slightly from a reference uniform equilibrium state at rest is investigated on the basis of the linearized Boltzmann equation. By a systematic asymptotic analysis, a set of fluid-dynamic-type equations and its boundary conditions that describe the gas behavior up to the second order of the Knudsen number are derived. The developed theory covers a general intermolecular potential and a gas-surface interaction. It is shown that (i) the compressibility of the gas manifests itself from the leading order in the energy equation and from the first order in the continuity equation; (ii) although the momentum equation is the Stokes equation, it contains a double Laplacian of the leading order flow velocity as a source term at the second order; (iii) a double Laplacian source term also appears in the energy equation at the second order; (iv) the slip and jump conditions are the same as those in the time-independent case up to the first order, and the difference occurs at the second order in the jump conditions as the terms of the divergence of flow velocity and of the Laplacian of temperature. Numerical values of all the slip and jump coefficients are obtained for a hard-sphere gas by the use of a symmetric relation developed recently.  相似文献   

2.
采用格子Boltzmann方法模拟了微通道在滑移区内不同Knudsen数下的微气体Poiseuille流,分析了微气体流动的速度分布以及流量与压降的关系,并给出了相对滑移长度和Poiseuille数随Knudsen数的变化特性。研究结果表明,微气体Poiseuille流的速度轮廓呈抛物线分布,但是边界速度大于0,出现速...  相似文献   

3.
An exact analytic solution of the problem of the right circular cylinder in a rarefied molecular gas is constructed in the isothermal approximation. An expression for the velocity of a rarefied molecular gas entrained by the cylinder rotated therein is obtained in the regime of a flow with slip accounting for the second-order correction in terms of the Knudsen number. A generalization of the BGK model of the Boltzmann kinetic equation accounting for the rotational degrees of freedom of gas molecules is used as the governing equation, and the diffuse reflection model is used as a microscopic boundary condition on the cylinder surface. The given approach is shown to enable the consideration of the gas flow dependence on the Prandtl number and the gas temperature.  相似文献   

4.
The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model(DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation.It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model.Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model.To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified.  相似文献   

5.
A new concentration slip model to describe the rarefied gas effect on the species transport in microscale chemical reactors was derived from the approximate solution of the Boltzmann equation. The present model is more general and recovers the existing models in the limiting cases. The analytical results showed that the concentration slip is dominated by two different mechanisms, the reaction induced concentration slip (RIC) and the temperature slip induced concentration slip (TIC). The magnitude of RIC slip is proportional to the product of the Damköhler number and Knudsen number. The impact of the velocity, concentration and temperature slips on the coupling between the surface catalytic reactions and the homogeneous gas phase reactions was examined using the detailed chemistry of hydrogen and methane within a wide range of accommodation coefficients in a two-dimensional microscale chemical reactor. The results showed that the impact of reaction induced concentration slip (RIC) effects on catalytic reactions strongly depends on the Damköhler number, the Knudsen number and the surface accommodation coefficient. It was found that the TIC slip had a strong effect on the fuel oxidation rates and the RIC slip dramatically changed the mass fraction distributions of radicals, especially when the mass accommodation coefficients were far less than unity.  相似文献   

6.
V. N. Popov 《Technical Physics》2002,47(10):1219-1225
An analytical method for solving the half-space boundary problem of a nonuniform (in both temperature and mass flow rate) rarefied gas flow along a solid cylindrical surface is developed in the framework of the inhomogeneous kinetic Boltzmann equation with the collision operator in the ellipsoidal-statistical model. In the linear approximation in the Knudsen number, the corrections to the coefficients of thermal and isothermal slidings are found in view of the interface curvature. A comparison with the literature data is presented.  相似文献   

7.
The problem of a sphere rotating in a molecular gas is solved in the isothermal approximation. The expression for the velocity of a rarefied molecular gas entrained by a sphere rotating in it is derived for sliding flow conditions taking into account the second-order correction in the Knudsen number. A generalization of the Boltzmann kinetic equation in the BGK model to the case of rotational degrees of freedom of gas molecules is used as the basic equation. The diffusive reflection model is employed as the microscopic boundary condition on the surface of the sphere. It is shown that this approach makes it possible to take into account the dependence of the gas velocity on the Prandtl number and gas temperature.  相似文献   

8.
李志辉  彭傲平  方方  李四新  张顺玉 《物理学报》2015,64(22):224703-224703
如何准确可靠地模拟从外层空间高稀薄流到近地面连续流的航天器高超声速绕流环境与复杂流动变化机理是流体物理的前沿基础科学问题. 基于对Boltzmann方程碰撞积分的物理分析与可计算建模, 确立了可描述自由分子流到连续流区各流域不同马赫数复杂流动输运现象统一的Boltzmann模型速度分布函数方程, 发展了适于高、低不同马赫数绕流问题的离散速度坐标法和直接求解分子速度分布函数演化更新的气体动理论数值格式, 建立了模拟复杂飞行器跨流域高超声速飞行热环境绕流问题的气体动理论统一算法. 对稀薄流到连续流不同Knudsen数0.002 ≤Kn ≤1.618、不同马赫数下可重复使用卫星体再入过程(110–70 km)中高超声速绕流问题进行算法验证分析, 计算结果与典型文献的Monte Carlo直接模拟值及相关理论分析符合得较好. 研究揭示了飞行器跨流域不同高度高超声速复杂流动机理、绕流现象与气动力/热变化规律, 提出了一个通过数值求解介观Boltzmann模型方程, 可靠模拟高稀薄自由分子流到连续流跨流域高超声速气动力/热绕流特性统一算法.  相似文献   

9.
A relaxation kinetic equation that describes the behavior of a Bose gas is derived. The Kramers half-space problem on isothermal slip is treated. An analytical solution and the number-of-particle distribution function for particles flying toward a wall, in explicit form, are obtained. The dependence of the slip velocity on the parameter that is the ratio of the chemical potential to the product of Boltzmann's constant by the absolute temperature is analyzed. The influence of the quantum effects on the isothermal slip coefficient is evaluated for He4.  相似文献   

10.
An analysis is made of the effects on the diffusion of Brownian particles whose Knudsen number is large compared to unity, of nonuniformities in the host gas. As examples, in one type of nonuniformity of the host gas, the Chapman-Enskog velocity distribution function for the gas molecules is used; in the other, the host gas is a free-molecule Couette flow. In both cases, a new force on the Brownian particles appears. Two techniques are used (extending Kramers' method and utilizing the Chapman-Enskog method) to transform the new Fokker-Planck equation into generalized Smoluchowski and convective diffusion equations. In these equations, the diffusion coefficient appears as a second-order tensor. Thus, it is demonstrated that Brownian diffusion in a nonuniform gas is anisotropic.The work of Slinn was financially supported in part by Battelle Memorial Institute and in part by U.S. Atomic Energy Commission Contract AT(45-1)-1830. The work of Shen was supported in part by U.S. Air Force Office of Scientific Research Contract 49(638)-1346.  相似文献   

11.
考虑转动能的一维/二维Boltzmann-Rykov模型方程数值算法   总被引:1,自引:0,他引:1  
研究考虑转动能的Boltzmann-Rykov模型方程,基于转动自由度对气体分子速度分布函数矩积分,引入约化速度分布函数,应用离散速度坐标法与数值积分技术,将气体运动论模型方程化为在离散速度坐标点处关于三个约化速度分布函数的联立方程组.应用拓展计算流体力学有限差分方法,数值计算考虑转动自由度的双原子气体一维、二维Boltzmann模型方程,得到高、低Knudsen数一维激波管内流动和二维竖直平板绕流问题的流场,分析验证考虑转动能的Boltzmann-Rykov模型方程全流域统一算法求解一维/二维气体流动问题的可靠性.结果表明,气体稀薄程度与分子内自由度对流场具有较大影响,且Knudsen数较高的稀薄气体流动呈现严重的非平衡流动特点.  相似文献   

12.
The thermal creeping effect on slip velocity of air forced convection through a nanochannel is studied for the first time by using a lattice Boltzmann method. The nanochannel side walls are kept hot while the cold inlet air streams along them. The computations are presented for the wide range of Reynolds number, Knudsen number and Eckert number while slip velocity and temperature jump effects are involved. Moreover appropriate validations are performed versus previous works concerned the micro–nanoflows.The achieved results are shown as the velocity and temperature profiles at different cross sections, streamlines and isotherms and also the values of slip velocity and temperature jump along the nanochannel walls. The ability of the lattice Boltzmann method to simulate the thermal creeping effects on hydrodynamic and thermal domains of flow is shown at this study; so that its effects should be involved at lower values of Eckert number and higher values of Reynolds number especially at entrance region where the most temperature gradient exists.  相似文献   

13.
随机粗糙微通道内流动特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
闫寒  张文明  胡开明  刘岩  孟光 《物理学报》2013,62(17):174701-174701
采用计算流体动力学的方法, 研究了微通道内气体在速度滑移和随机表面粗糙度耦合作用下的流动特性. 其中, 利用二阶速度滑移边界条件描述气体的边界滑移, 利用分形几何学建立随机粗糙表面. 研究发现, 综合考虑二阶速度滑移边界条件和随机表面粗糙度在较大的平均Knudsen数范围内 (0.025-0.59) 得到的计算结果与实验数据符合得很好, 而一阶速度滑移边界条件只在平均Knudsen数较小时(<0.1)符合实验结果. 随机表面粗糙度对气体在边界处的滑移有显著影响, 相对粗糙度越大, 速度滑移系数越小. 并针对计算结果, 给出了滑移系数与相对粗糙度近似满足的关系. 随机粗糙表面对气体流动过程中的压强、速度、Poiseuille数也有显著影响. 关键词: 随机表面粗糙度 二阶速度滑移边界条件 分形 微通道  相似文献   

14.
Lattice-Boltzmann Simulations of Fluid Flows in MEMS   总被引:1,自引:0,他引:1  
The lattice Boltzmann model is a simplified kinetic method based on the particle distribution function. We use this method to simulate problems in MEMS, in which the velocity slip near the wall plays an important role. It is demonstrated that the lattice Boltzmann method can capture the fundamental behaviors in micro-channel flow, including velocity slip, nonlinear pressure drop along the channel and mass flow rate variation with Knudsen number. The Knudsen number dependence of the position of the vortex center and the pressure contour in micro-cavity flows is also demonstrated.  相似文献   

15.
Rarefied gas flow in a parallel-plate micro-channel is considered, where a streamwise constant temperature gradient is applied in the channel walls. An analytical approach to the problem is conducted based on linearized and semi-linearized forms of the regularized 13-moment equations (R13 equations), which are a set of macroscopic transport equations for rarefied gases at the super-Burnett order. Typical nonequilibrium effects at the boundary, i.e., velocity slip, temperature jump, and formation of Knudsen boundary layers are investigated. Nonlinear contributions lead to temperature, density, and normal stress profiles across the channel which are not reported elsewhere in literature.  相似文献   

16.
本文基于统一气体动理学格式(Unified Gas Kinetic Scheme,UGKS),对微尺度过渡区气体绕流方柱开展数值模拟研究,计算分析了Kn数对气体流动传热过程的影响规律。研究发现,随着Kn数增加,方柱壁面气体速度滑移和温度跳跃增大,壁面上压力、剪切力和热流也相应增大,方柱壁面-气体之间的换热得到强化;方柱对气体流动的阻碍作用减小,方柱前滞止区影响范围相对增大,方柱温度对柱后区域气体温度影响相对减小。  相似文献   

17.
Approximation formulas are obtained for calculation of the gas flow rate in long isothermal microchannels. The quasi-gas-dynamic equations with Maxwell’s slip conditions are shown to predict a minimum in the flow rate within a channel that is called the Knudsen minimum. Corrections are proposed enabling derivation of approximate formulas for flow rates valid for any Knudsen number.  相似文献   

18.
微圆管进口区气体流动与换热特性研究   总被引:1,自引:0,他引:1  
对微圆管进口区运用一阶速度滑移和温度跳跃边界,考察了Kn、动量调和及热调和系数对流动与换热特性的影响机理和规律.模拟结果表明:流动进口段长度随Kn增加而增加,但随动量调和系数减小而减小;热进口段长度随Kn增加而增加,但随动量调和系数及热调和系数减小而减小;Nu数随Kn增加及热调和系数减小而减小,但随动量调和系数减小而增加.  相似文献   

19.
Gas flows in the continuum-transition regime often occur in micro-electro-mechanical systems. The relaxation time Monte Carlo (RTMC) method was modified by using an ellipsoid statistical model and a multiple translational temperature model in the BGK model equation to simulate continuum-transition gas flows. The modified RTMC method uses a simplified form of the generalized relaxation time, which is related to the macro velocity and the local Knudsen number. The results for Couette flow and Poiseuille flow in microchannels predicted using the modified RTMC and the DSMC are in good agreement with the modified RTMC being much faster than the DSMC for continuum-transition gas flow simulations.  相似文献   

20.
The results of simulating the Holweck pump by numerically solving the Boltzmann kinetic equation are reported. The nonlinear collision integral is calculated using the conservative projection method. The translation operator is approximated with tetrahedral grids. The ratio of pressures in pumped-in and pumpedout containers is studied as a function of the gas density (rarefaction) and the radius and rotation velocity of the rotor at Knudsen numbers close to unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号