首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method
Institution:1. Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Cameroon;2. Department of Physics, Higher Teachers'' Training College, The University of Maroua, PO BOX 55 Maroua, Cameroon;1. Department of Applied Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;2. Institute of Applied Physics and Materials Engineering, FST, University of Macau, China;1. Department of Physics, MIT Campus, Anna University, Chennai 600044, India;2. Division of Applied Physics, University of Tsukuba, Ibaraki 305-8573, Japan;3. Department of Nuclear Physics, Guindy Campus, University of Madras, Chennai 600025, India
Abstract:The thermal creeping effect on slip velocity of air forced convection through a nanochannel is studied for the first time by using a lattice Boltzmann method. The nanochannel side walls are kept hot while the cold inlet air streams along them. The computations are presented for the wide range of Reynolds number, Knudsen number and Eckert number while slip velocity and temperature jump effects are involved. Moreover appropriate validations are performed versus previous works concerned the micro–nanoflows.The achieved results are shown as the velocity and temperature profiles at different cross sections, streamlines and isotherms and also the values of slip velocity and temperature jump along the nanochannel walls. The ability of the lattice Boltzmann method to simulate the thermal creeping effects on hydrodynamic and thermal domains of flow is shown at this study; so that its effects should be involved at lower values of Eckert number and higher values of Reynolds number especially at entrance region where the most temperature gradient exists.
Keywords:Lattice Boltzmann method  Nanochannel  Thermal creeping  Slip flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号