首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The basic laws of the phenomenological theory of radiative energy transfer are derived, under certain conditions, within the framework of the stochastic scalar wave theory. An equation of radiative energy transfer is derived for wave propagation in a statistically quasihomogeneous medium. Our results relate the extinction and scattering coefficients (which are introduced heuristically in the conventional theory of radiative energy transfer) to the stochastic characteristics of the medium.  相似文献   

2.
Breakdown of the Planck blackbody radiation law at nanoscale gaps   总被引:1,自引:0,他引:1  
The Planck theory of blackbody radiation imposes a limit on the maximum radiative transfer between two objects at given temperatures. When the two objects are close enough, near-field effects due to tunneling of evanescent waves lead to enhancement of radiative transfer above the Planck limit. When the objects can support electromagnetic surface polaritons, the enhancement can be a few orders-of-magnitude larger than the blackbody limit. In this paper, we summarize our recent measurements of radiative transfer between two parallel silica surfaces and between a silica microsphere and a flat silica surface that show unambiguous evidence of enhancement of radiative transfer due to near-field effects above the Planck limit.  相似文献   

3.
4.
We formulate the adjoint radiative transfer for a pseudo-spherical atmosphere and various retrieval scenarios. The single scattering radiance is computed in a spherical atmosphere by using the source integration technique, while for the multiple scattering radiance we formulate an one-dimensional adjoint radiative transfer equation in a plane-parallel atmosphere. The adjoint solution of the radiative transfer equation is obtained by employing the discrete ordinate method with matrix exponential. We provide an abbreviated derivation of our formalism as well as a discussion of the numerical implementation of the theory.  相似文献   

5.
Radiative perturbation theory has proven to be a useful tool in radiative transfer calculations, especially in situations where repeated solution of the radiative transfer equation is required. So far however, its use has been restricted to non-polarized situations, including such applications as surface fluxes, UV indices, and the inversion of satellite radiance observations. Here, we extend the structure of radiative perturbation theory to incorporate the full Stokes formalism of polarization, to obtain the relevant equations for the first order term. This formalism will be applied to fluxes in a follow-up paper, and eventually to satellite observations.  相似文献   

6.
We present a feasibility study of a new method for determining the tissue optical properties, including the absorption and scattering coefficients and the scattering asymmetry factor. A state-of-the-art radiative transfer model for the coupled air/tissue system, based on rigorous radiative transfer theory, is used in our forward modeling simulations. The concept of the effective photon penetration depth is introduced and used to help determine the depth below, which information about the tissue will not be available through noninvasive imaging of a biological tissue using reflected diffuse light. Simulation results show that for accurate determination of tissue optical properties, one can use radiative transfer theory in conjunction with measurements of reflected radiances as well as other existing techniques.  相似文献   

7.
We present a plane parallel radiative transfer model for polarized light, that provides the intensity vector as well as the derivatives of the four Stokes parameters with respect to atmospheric trace gas profiles. These derivatives are essential for retrieval of height resolved trace gas information from satellite measurements of backscattered sunlight. The model uses the Gauss-Seidel iteration technique for solving the radiative transfer equation. For the first time, the forward-adjoint radiative perturbation theory is applied for the linearization of a radiative transfer model including polarization. The accuracy of the model is better than 0.025% for all four Stokes parameters and better than 0.03% for the derivatives.  相似文献   

8.
In a recent paper a new theory of radiative energy transfer in free electromagnetic fields was formulated. The basic quantities in this theory are the so-called angular components of the average electromagnetic energy density and of the average Poynting vector. In the present paper it is shown that these angular components obey differential equations that may be considered to be rigorous equations for the radiative transfer of energy and of momentum in free electromagnetic fields.  相似文献   

9.
Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM2. The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media.  相似文献   

10.
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument.  相似文献   

11.
辐射(火积)耗散与空间辐射器温度场均匀化的关系   总被引:1,自引:0,他引:1  
(火积)理论是针对传热优化发展起来的,并获得了越来越多的应用。本文基于辐射(?)原理,对空间辐射器散热过程中的散热量分布、发射率分布和散热面积分布问题进行了分析。对于以上三类优化分布问题,理论分析和数值计算均表明,辐射器最小的辐射(?)耗散和辐射热阻均对应于散热表面均匀的温度场。因此,辐射(?)原理可用于空间辐射器的温度场均匀化设计。  相似文献   

12.
程天海  顾行发  余涛  陈良富  田国良 《物理学报》2009,58(10):7368-7375
矢量辐射传输方程定量描述了辐射在地表-大气耦合介质中的传输过程,是定量遥感的基础.在处理辐射和离散介质相互作用时,如何处理多次散射、辐射偏振效应和耦合地表模型是研究的重点,直接影响定量化遥感反演的精度.文中基于逐次散射近似法求解了矢量辐射传输方程,求解过程中耦合典型地表的非偏双向反射(BRDF)模型和偏振双面反射(BPDF)模型.采用相对误差因子定量分析了地表双向反射效应和大气偏振效应对天基矢量辐射的影响.为进一步研究地表-大气耦合介质系统的偏振特性及地表大气参数的定量遥感反演提供理论支持. 关键词: 矢量辐射传输方程 逐次散射近似 定量遥感 偏振遥感  相似文献   

13.
All transfer reactions and radiative capture nuclear-astrophysical reactions at low energies measured so far are analysed using a reaction theory that contains overlap functions between the wave functions of the target and residual nuclei. These overlaps are assumed to have an asymptotic form determined by the separation energy of the transferred (or radiative captured) cluster and such an assumption is incorporated into all reaction codes. We point out that although this asymptotic form is dominant for the majority of the transfer reactions and the nuclear-astrophysical radiative capture reactions, for some cases the overlap function has anomalous asymptotic behavior. This behavior originates from virtual decays of the complex nucleus into intermediate channels and, mathematically, is generated by contributions from the singularities of the triangle Feynman diagram and the generalised triangle diagram containing a loop. In the present work, these contributions are investigated in detail and expressions are derived for the strengths of the anomalous terms taking spin variables and the Coulomb effects into account. We present specific examples of nuclear vertices with anomalous asymptotics and discuss their application for peripheral nuclear processes.  相似文献   

14.
本文讨论了极化电磁波在随机介质中多次散射,传输和热辐射的斯托克斯矢量的辐射传输理论。其中包括随机分布离散的球形和非球形粒子的矢量辐射传输方程,离散坐标-特征分析法,付利叶变换,迭代法等数值解。讨论了非球形粒子的穆勒矩阵。并研究了密集分布的散射粒子介质的辐射传输理论,考虑了密集粒子散射的相干性,计算了有效传播常数。理论及数值结果与实验作了很好的比较。  相似文献   

15.
煤粉炉内弥散介质辐射传热的综合模拟   总被引:3,自引:0,他引:3  
本文基于辐射传热计算的DT法和颗粒运动计算的随机轨道法,并结合单颗粒的辐射特性模型,构造了能够详细考虑颗粒燃尽、湍流弥散诸因素对炉内空间局部辐射特性及总体辐射传热影响的弥散介质辐射传热计算模型,并将其耦合到炉内过程的总体数值模型中。采用该程序,比较计算了几种颗粒辐射特性模型对某300MW锅炉炉内温度场的预报结果,结果表明:通常采用的均匀颗粒辐射特性模型会导致温度场的极大误差;由于炉内颗粒浓度的不均匀分布,炉内的温度分布呈现高度非均匀状态,在炉膛轴线上有大面积的高温烟气区存在;考虑残炭存在时,温度分布的不均匀性更显著.  相似文献   

16.
基于矩阵算法建立了一个可用于模拟水体非弹性散射过程的水体辐射传输数值模型.该模型采用单个均匀介质层中辐射能量随深度增大而呈指数衰减的假设,将非弹性散射作为源矩阵算子引入到矩阵算法当中进行解算.通过Mobley水体辐射传输标准问题7的验证以及与Hydrolight 5.0结果的比较,说明该模型对多次散射和非弹性散射的处理...  相似文献   

17.
The radiative transfer perturbation theory (RTPT), which has already been introduced in atmospheric radiative transfer several years ago, is applied to cloud related problems. The RTPT requires the solution of the radiative transfer equation in the forward and the adjoint mode. The basic principles of this technique are presented as well as its extensions to isotropic surface reflection and its conjunction with the Hermite interpolation. This set of methods is applied to different atmospheric conditions including realistic cloud scenes. The results are compared with the usual (forward) independent-pixel calculations with respect to errors of individual pixels and domain-averaged values. The RTPT turns out to be sufficiently accurate in the case the clouds’ internal vertical variations remain moderate. It is also shown that, depending on the specific radiative transfer problem, the RTPT can offer some advantages on computational speed. However, the limitations of the RTPT with regard to realistic clouds are addressed as well.  相似文献   

18.
The objective of this paper is to discuss the role of fluctuational electrodynamics in the context of a generalized radiative heat transfer problem. Near-field effects, including the interference phenomenon and radiation tunneling, are important for applications to nanostructures. The classical theory of radiative transfer cannot be readily applied as the feature size approaches the dominant wavelength of radiative emission. At all length scales, however, propagation of radiative energy is properly represented by the electromagnetic wave approach, which requires the solution of the Maxwell equations. Fluctuational electrodynamics provides a model for thermal emission when solving a near-field radiation heat transfer problem, and the fluctuation-dissipation theorem provides the bridge between the strength of the fluctuations of the charges inside a body and its local temperature. This paper provides a complete and systematic derivation of the near-field radiative heat flux starting from the Maxwell equations. An illustrative example of near-field versus far-field radiation heat transfer is presented, and the length scale for transition from near- to far-field regime is discussed; the results show that this length scale can be as large as three times than predicted from Wien's law.  相似文献   

19.
The influence of uncertainty in the absorption and scattering coefficients on the solution and associated parameters of the radiative transfer equation is studied using polynomial chaos theory. The uncertainty is defined by means of uniform and log-uniform probability distributions. By expanding the radiation intensity in a series of polynomial chaos functions we may reduce the stochastic transfer equation to a set of coupled deterministic equations, analogous to those that arise in multigroup neutron transport theory, with the effective multigroup transfer scattering coefficients containing information about the uncertainty. This procedure enables existing transport theory computer codes to be used, with little modification, to solve the problem. Applications are made to a transmission problem and a constant source problem in a slab. In addition, we also study the rod model for which exact analytical solutions are readily available. In all cases, numerical results in the form of mean, variance and sensitivity are given that illustrate how absorption and scattering coefficient uncertainty influences the solution of the radiative transfer equation.  相似文献   

20.
Schäfer J  Kienle A 《Optics letters》2008,33(20):2413-2415
We have compared radiative transfer theory with analytical solutions of the Maxwell equations for light scattering by multiple infinitely long parallel cylinders at perpendicular incidence. The calculated scattering cross sections for both methods show large differences, but the angle-dependent differential scattering cross-section results are very similar for small cylinder densities, except close to the forward direction. In contrast to recently published results, it is shown that the radiative transfer equation is a useful approximation for small cylinder concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号