首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
This paper presents the Tree of Hubs Location Problem. It is a network hub location problem with single assignment where a fixed number of hubs have to be located, with the particularity that it is required that the hubs are connected by means of a tree. The problem combines several aspects of location, network design and routing problems. Potential applications appear in telecommunications and transportation systems, when set-up costs for links between hubs are so high that full interconnection between hub nodes is prohibitive. We propose an integer programming formulation for the problem. Furthermore, we present some families of valid inequalities that reinforce the formulation and we give an exact separation procedure for them. Finally, we present computational results using the well-known AP and CAB data sets.  相似文献   

2.
Hubs are special facilities that serve as switching, transshipment and sorting points in many-to-many distribution systems. The hub location problem is concerned with locating hub facilities and allocating demand nodes to hubs in order to route the traffic between origin–destination pairs. In this paper we classify and survey network hub location models. We also include some recent trends on hub location and provide a synthesis of the literature.  相似文献   

3.
In an intermodal hub network, cost benefits can be achieved through the use of intermodal shipments and the economies of scale due to consolidation of flows at the hubs. However, due to limited resources at the logistics hubs, shipment delays may affect the service performance. In this research hub operations are modeled as a GI/G/1 queuing network and the shipments as multiple job classes with deterministic routings. By integrating the hub operation queuing model and the hub location-allocation model, the effect of limited hub resources on the design of intermodal logistics networks under service time requirements is investigated. The managerial insights gained from a study of 25-city road-rail intermodal logistics network show that the level of available hub resources significantly affects the logistics network structure in terms of number and location of hubs, total network costs, choice of single-hub and inter-hub shipments and service performance.  相似文献   

4.
In this paper, an extension of the capacitated single-allocation hub location problem is considered in which the capacity of the hubs is part of the decision making process and balancing requirements are imposed on the network. The decisions to be made comprise (i) the selection of the hubs, (ii) the allocation of the spoke nodes to the hubs, (iii) the flow distribution through the sub network defined by the hubs and (iv) the capacity level at which each hub should operate. In the latter case, for each potential hub, a set of available capacities is considered among which one can be chosen. The objective is to minimize the total cost, which includes the setup cost for the hubs as well as the flow routing cost. Economies of scale are assumed for the costs. Balancing requirements are imposed to the network. In particular, a value is considered for the maximum difference between the maximum and minimum number of spoke nodes that are allocated to the hubs. Two mixed-integer linear programming formulations are proposed and analyzed for this problem. The results of a set of computational experiments using an off-the-shelf commercial solver are presented. These tests aim at evaluate the possibility of solving the problem to optimality using such a solver with a particular emphasis to the impact of the balancing requirements. The tests also allow an analysis of the gap of the bounds provided by linear relaxation.  相似文献   

5.
Given the demand between each origin-destination pair on a network, the planar hub location problem is to locate the multiple hubs anywhere on the plane and to assign the traffic to them so as to minimize the total travelling cost. The trips between any two points can be nonstop (no hubs used) or started by visiting any of the hubs. The travel cost between hubs is discounted with a factor. It is assumed that each point can be served by multiple hubs. We propose a probabilistic clustering method for the planar hub-location problem which is analogous to the method of Iyigun and Ben-Israel (in Operations Research Letters 38, 207–214, 2010; Computational Optmization and Applications, 2013) for the solution of the multi-facility location problem. The proposed method is an iterative probabilistic approach assuming that all trips can be taken with probabilities that depend on the travel costs based on the hub locations. Each hub location is the convex combination of all data points and other hubs. The probabilities are updated at each iteration together with the hub locations. Computations stop when the hub locations stop moving. Fermat-Weber problem and multi-facility location problem are the special cases of the proposed approach.  相似文献   

6.
Many air, less-than-truck load and intermodal transportation and telecommunication networks incorporate hubs in an effort to reduce total cost. These hubs function as make bulk/break bulk or consolidation/deconsolidation centres. In this paper, a new hub location and network design formulation is presented that considers the fixed costs of establishing the hubs and the arcs in the network, and the variable costs associated with the demands on the arcs. The problem is formulated as a mixed integer programming problem embedding a multi-commodity flow model. The formulation can be transformed into some previously modelled hub network design problems. We develop a dual-based heuristic that exploits the multi-commodity flow problem structure embedded in the formulation. The test results indicate that the heuristic is an effective way to solve this computationally complex problem.  相似文献   

7.
Hub location problem has been used in transportation network to exploit economies of scale. For example, a controversial issue in the planning of air transportation networks is inclement weather or emergency conditions. In this situation, hub facilities would not be able to provide a good service to their spoke nodes temporarily. Thus, some other kinds of predetermined underutilized facilities in the network are used as virtual hubs to host some or all connections of original hubs to recover the incurred incapacitation and increase network flexibility and demand flow. In such an unexpected situation, it is not unreasonable to expect that some information be imprecise or vague. To deal with this issue, fuzzy concept is used to pose a more realistic problem. Here, we present a fuzzy integer liner programming approach to propose a dynamic virtual hub location problem with the aim of minimizing transportation cost in the network. We examine the effectiveness of our model using the well-known CAB data set.  相似文献   

8.
In this paper we address a problem consisting of determining the routes and the hubs to be used in order to send, at minimum cost, a set of commodities from sources to destinations in a given capacitated network. The capacities and costs of the arcs and hubs are given, and the arcs connecting the hubs are not assumed to create a complete graph. We present a mixed integer linear programming formulation and describe two branch-and-cut algorithms based on decomposition techniques. We evaluate and compare these algorithms on instances with up to 25 commodities and 10 potential hubs. One of the contributions of this paper is to show that a Double Benders’ Decomposition approach outperforms the standard Benders’ Decomposition, which has been widely used in recent articles on similar problems. For larger instances we propose a heuristic approach based on a linear programming relaxation of the mixed integer model. The heuristic turns out to be very effective and the results of our computational experiments show that near-optimal solutions can be derived rapidly.  相似文献   

9.
The hub location problem with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. The aim of this paper is to investigate polyhedral properties of these problems and to develop a branch and cut algorithm based on these results.Acknowledgement The research of the first author was partially supported by the Banque Nationale de Belgique. The research of the second author was supported by France Telecom R&D under contract no. 99 1B 774. Their support is gratefully acknowledged.  相似文献   

10.
Consolidation at hubs in a pure hub-and-spoke network eliminates partial center-to-center direct loads, resulting in savings in transportation costs. In this research, we propose a general capacitated p-hub median model, with economies of scale and integral constraints on the paths. This model requires the selection of a specific p among a set of candidate hubs so that the total cost on the resulting pure capacitated hub-and-spoke network is minimized while simultaneously meeting origin–destination demands, operational capacity and singular path constraints. We explored the problem structure and developed a genetic algorithm using the path for encoding. This algorithm is capable of determining local optimality within less than 0.1% of the Lagrangian relaxation lower bounds on our Chinese air cargo network testing case and has reasonable computational times. The study showed that designating airports with high pickups or deliveries as hubs resulted in a high percentage of origin–destination pairs (ODs) in direct deliveries. Furthermore, the more hubs there are, the higher the direct share and the less likely for double rehandles. Sensitivity analysis on the discount rate showed that the economies of scale on trunk lines of hub-and-spoke networks may have a substantial impact on both the operating costs and the route patterns.  相似文献   

11.
This paper focuses on the problem for designing a logistics system for bio-methane gas (BMG) production. In practice, farm residues such as crop residue, wood residue, and livestock manure are used in reactors as reactants to generate BMG. A multi-residue, multi-hub, multi-reactor location-allocation model is developed to design the logistics of BMG production system. Both the hubs’ and reactors’ locations, and the residue's distribution plan are investigated to minimize the total construction and logistical cost. The costs of construction, transportation, feedstocks and labor are taken into consideration to reflect the lifecycle cost of the entire undertaking. In this paper, a mixed-integer nonlinear problem is proposed to simulate a BMG production supply chain. In addition to the optimal solution methods, a search-based heuristic was also proposed to determine the locations of hubs and reactors for large instances and along with a proper allocation of residues that are transported from the farms to the hubs to the reactors. Several numerical examples are tested to evaluate the performance of the heuristic as well.  相似文献   

12.
Hub location problems involve locating hub facilities and allocating demand nodes to hubs in order to provide service between origin–destination pairs. In this study, we focus on cargo applications of the hub location problem. Through observations from the Turkish cargo sector, we propose a new mathematical model for the hub location problem that relaxes the complete hub network assumption. Our model minimizes the cost of establishing hubs and hub links, while designing a network that services each origin–destination pair within a time bound. We formulate a single-allocation hub covering model that permits visiting at most three hubs on a route. The model is then applied to the realistic instances of the Turkish network and to the Civil Aeronautics Board data set.  相似文献   

13.
The hub location problem finds the location of hubs and allocates the other nodes to them. It is widely supposed the network created with the hub nodes is complete in the extensive literature. Relaxation of this basic supposition forms the present work. The model minimizes the cost of the proprietor, including the fixed costs of hubs, hub links and spoke links. Costs of hub and spoke links are contemplated as fixed cost or maintenance cost. Moreover, the model considers routing costs of customers who want to travel from origins to destinations. In this study, we offer a model to the multiple allocations of the hub location problems, under the incomplete hub location-routing network design. This model is easily transformed to other hub location problems using one or more constraints. No network format is dictated on the hub network. We suggest a set of valid inequalities for the formulation. Some lower bounds are developed using a Lagrangian relaxation approach and the valid inequalities. Computational analyses evaluate the performances of the lower bounding implementations and valid inequalities. Furthermore, we explore the effects of several factors on the design and solution time of the problem formulation.  相似文献   

14.
Hub and spoke networks are used to switch and transfer commodities between terminal nodes in distribution systems at minimum cost and/or time. The p-hub center allocation problem is to minimize maximum travel time in networks by locating p hubs from a set of candidate hub locations and allocating demand and supply nodes to hubs. The capacities of the hubs are given. In previous studies, authors usually considered only quantitative parameters such as cost and time to find the optimum location. But it seems not to be sufficient and often the critical role of qualitative parameters like quality of service, zone traffic, environmental issues, capability for development in the future and etc. that are critical for decision makers (DMs), have not been incorporated into models. In many real world situations qualitative parameters are as much important as quantitative ones. We present a hybrid approach to the p-hub center problem in which the location of hub facilities is determined by both parameters simultaneously. Dealing with qualitative and uncertain data, Fuzzy systems are used to cope with these conditions and they are used as the basis of this work. We use fuzzy VIKOR to model a hybrid solution to the hub location problem. Results are used by a genetic algorithm solution to successfully solve a number of problem instances. Furthermore, this method can be used to take into account more desired quantitative variables other than cost and time, like future market and potential customers easily.  相似文献   

15.
The hierarchical network design problem is the problem to find a spanning tree of minimum total weight, when the edges of the path between two given nodes are weighted by an other cost function than the tree edges not on this path. We point out that a dynamic programming oriented heuristic can already be found in literature. Further we report on possible extensions and improvements.  相似文献   

16.
Within a communications or transportation network, in which a number of locations exchange material or information, hubs can be used as intermediate switching points. In this way, traffic can be consolidated on inter-hub links and, thus, achieve economies of scale in transport costs. Recently, O'Kelly and Brian in 1998 proposed a model (termed the FLOWLOC model) that treats these economies of scale by means of piecewise-linear concave cost functions on the interhub arcs. We show that, for a fixed set of hubs, the FLOWLOC model can be solved using the classic Uncapacitated Facility Location Problem (UFLP). This observation then motivates an optimal enumeration procedure for the FLOWLOC model, as well as some search heuristics that are based upon tabu search and greedy random adaptive search procedures (GRASP). These search procedures would be especially applicable for large-sized problems. Some computational experience is described.  相似文献   

17.
The hub covering flow problem (HCFP) seeks to find the minimal cost hub-and-spoke network by optimally locating hub nodes and assigning non-hub nodes to the hub nodes subject to a coverage constraint. The cost of establishing such a hub network is based on a fixed cost of opening hubs and the cost of transporting demand flow through the network. We also present an extension called the multi-aircraft HCFP. The results from computational experiments are presented and discussed.  相似文献   

18.
Bi-Objective Median Subtree Location Problems   总被引:1,自引:0,他引:1  
A number of network design problems can be built on the following premise: given an undirected tree network, T, with node set, V, identify a single subtree, t, containing nodes, v, so that the subtree is located optimally with respect to the remaining, subset of unconnected nodes {Vv}. Distances between unconnected nodes and nodes in the subtree t can be defined on paths that are restricted to lie in the larger tree T (the restricted case), or can be defined on paths in an auxiliary complete graph G (the unrestricted case). The unrestricted case represents a class of problems that is not explicitly recognized in the literature, which is of intermediate complexity relative to the widely studied restricted case, and the general problem in which the underlying graph is general. This paper presents the Median Subtree Location Problem (MSLP), formulated as a bicriterion problem that trades off the cost of a subtree, t, against the population-weighted travel distance from the unconnected nodes to nodes on the subtree where both objectives are to be minimized. Integer programs were formulated for the travel restricted and travel unrestricted cases and were tested using linear programming and branch and bound to resolve fractions. Tradeoff curves between cost and travel burden were developed for sample networks.  相似文献   

19.
1 IntroductionIn [2] tl1e authors considered a type of coustrained maximim capacity path problem whichcan be described briefly as: kuowing the costs for expallding one unit of capacity along differentedge8 of a l1etwork aud the availabIe budget, how to iucrease the caparities of the edges so thattlle capasity between any pair of nodes in the lletwork can be raised unifornily to the maximumextent? As the total cost is a summation of the expansion costs on all edges, this problem i8related to mi…  相似文献   

20.
In this paper, we study allocation strategies and their effects on total routing costs in hub networks. Given a set of nodes with pairwise traffic demands, the p-hub median problem is the problem of choosing p nodes as hub locations and routing traffic through these hubs at minimum cost. This problem has two versions; in single allocation problems, each node can send and receive traffic through a single hub, whereas in multiple allocation problems, there is no such restriction and a node may send and receive its traffic through all p hubs. This results in high fixed costs and complicated networks. In this study, we introduce the r-allocation p-hub median problem, where each node can be connected to at most r hubs. This new problem generalizes the two versions of the p-hub median problem. We derive mixed-integer programming formulations for this problem and perform a computational study using well-known datasets. For these datasets, we conclude that single allocation solutions are considerably more expensive than multiple allocation solutions, but significant savings can be achieved by allowing nodes to be allocated to two or three hubs rather than one. We also present models for variations of this problem with service quality considerations, flow thresholds, and non-stop service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号