首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La0.5Sr0.5CoO3-yttria-stabilized zirconia (LSCO-YSZ) composite cathode for solid oxide fuel cell (SOFC) has been fabricated by wet impregnation method. Nitrate precursors of La, Sr, and Co have been impregnated into the pre-sintered porous YSZ matrix, which is converted into LSCO phase after calcination at 850 °C in the presence of glycine as confirmed from X-ray diffraction. LSCO of 5, 7, and 10 wt% impregnated porous YSZ have been electrochemically characterized using 2-probe AC conductivity method. Maximum ionic conductivity of 0.27 S/cm at 800 °C and activation energy of 0.15 eV between 600 and 800 °C have been observed for 10 wt% LSCO-YSZ cathode. Area-specific resistance of 1.01 Ω cm2 at 800 °C is estimated for the electrolyte-supported half-cell (10 wt% LSCO-YSZ/YSZ). After testing the LSCO-YSZ cathode matrix, the electrolyte-supported full cell (10 wt% LSCO-YSZ/YSZ/NiO-YSZ) has been tested and produced maximum power density 51.12 mW/cm2 (109.38 mA/cm2) at 800 °C. The electrolyte-supported full cell exhibited 6 Ω cm2 electrode polarization at 800 °C in H2, which is in higher side leading to low performance. LSCO-YSZ/YSZ/NiO-YSZ SOFC found to give stable performance up to 2 h and scanning electron microscopy analysis has been carried out before and after cell testing to assess the morphological changes.  相似文献   

2.
The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 coated with CeO2 has been fabricated by an ionic interfusion method. Both the bare and the CeO2-coated samples have a typical layered structure with R-3m and C2/m space group. The results of XRD and TEM images display that the CeO2 coating layer on the precursor could enhance the growth of electrochemically active surface planes ((010), (110), and (100) planes) in the following ionic interfusion process. The results of galvanostatic cycling tests demonstrate that the CeO2-coated sample has a discharge capacity of 261.81 mAh g?1 with an increased initial Coulombic efficiency from 62.4 to 69.1% at 0.05 °C compared with that of bare sample and delivers an improved capacity retention from 71.7 to 83.4% after 100 cycles at 1 °C (1 °C?=?250 mA g?1). The results of electrochemical performances confirm that the surface modification sample exhibits less capacity fading, lower voltage decay, and less polarization.  相似文献   

3.
Ce0.9Sr0.1Cr0.5Co0.5O3?δ (CSCrCo) as an anode catalyst was studied in a solid oxide fuel cell (SOFC), where hydrogen sulfide (H2S) was used as fuel. The conductivities were evaluated with a four-probe DC technique in 3 % H2-N2 and 5 % H2S-N2 at 570–800 °C, respectively. X-ray diffraction (XRD) patterns show that CSCrCo powders are fluorite structure which is similar to that of CeO2 parent (JCPDS card no. 34-0394). Meanwhile, CSCrCo anode material has good chemical compatibility with electrolyte (Ce0.8Sm0.2O1.9 (SDC)) in N2. Through the analysis of XRD and Fourier transform infrared patterns, no other new phase is detected after treatment in 5 % H2S-N2 at 800 °C for 5 h, which indicate that the material has a good sulfur tolerance. H2 temperature-programmed reduction and Tafel curves indicate that the temperature of the best catalytic activity is 600 °C. The electrochemical properties of the cell comprising CSCrCo-SDC/SDC/Ag are measured in 5 % H2S-N2 at low temperatures (500 and 600 °C). The maximal open circuit voltage is 1.04 V, the maximal power density is 12.55 mW cm?2, and the maximal current density is 40 mA cm?2 at 500 °C. While at 600 °C, the corresponding values are 0.95 V, 14.21 mW cm?2, and 90.01 mA cm?2, respectively. After SOFC operating in 5 % H2S, X-ray photoelectron spectroscopy is used to compare the fresh sample with the H2S-treated one.  相似文献   

4.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

5.
A novel system based on the indirect oxy-combustion of coal in a liquid Sb anode solid oxide fuel cell (SOFC) has been used to produce electricity for over 48?h. Pulverized anthracite was fed to the liquid-antimony-anode of the fuel cell, and a peak power density of 47?mW cm?2 was reached at 1023?K and 35?mW cm?2 at 973?K. The fuel cell was prepared using a porous stainless-steel tube as a support for an LSM cathode, antimony oxide (Sb2O3)/yittria stabilized zirconia (YSZ, Y0.08Z0.92O1.96) composite electrolyte (membrane), while liquid antimony acted as the anode. Liquid antimony/antimony oxide served as the intermediate medium for coal oxidation producing mainly carbon dioxide, which evolved as a separate gas stream. The fuel cell will facilitate carbon capture process, and simultaneously convert the chemical energy of coal directly to electricity. The experiment showed that while the fabricated electrolyte was porous, it became dense during the actual operation, preventing nitrogen leakage into the Sb/C side and producing reasonable open circuit voltage. Analysis of the experimental EIS data illustrates that the Ohmic resistance was the primary loss mechanism in the system. It further suggests approaches to improve the design. Continuous operation of this coal fueled oxy-combustion/fuel cell system achieved an overall efficiency of 28.2% despite of its tiny scale. Simple technologies can be employed to scale up this system at relatively low cost of fabrication and materials.  相似文献   

6.
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature.  相似文献   

7.
In the present work, cobalt pentlandite (Co9S8) is studied as a solid oxide fuel cells (SOFC) anode material which is stable in H2S-containing fuels and is promising in coal-based SOFCs. Co9S8 is synthesized via a simple hydrothermal method. Uniform and fine Co9S8 particles are deposited on to the YSZ skeleton directly by using hydrothermal impregnation method and adhered to the skeleton closely after heat treating in N2. The symmetrical cells are measured in the presence of 50 ppm H2S–H2 to determine the electrochemical performance at intermediate temperatures. The polarization resistance is only 0.3385 Ω cm2 at 650 °C. It is concluded that Co9S8 exhibits a combination of good electronic conductivity and catalytic activity and has the potential to be used as a sulfur-tolerant anode material of SOFCs.  相似文献   

8.
V2O5-SiO2 hybrid material was fabricated by heat-treating a mixture of H2SiO3 and V2O5. SEM, TEM, XRD, and N2 isotherm analyses were performed to characterize the morphology and structure details of the as-prepared V2O5-SiO2. The possibility of using the as-prepared V2O5-SiO2 as anode material for aqueous lithium-ion batteries was investigated. Potentiostatic and galvanostatic results indicated that the intercalation/de-intercalation of Li+ in this material in aqueous electrolyte was quasi-reversible. It was also found that a discharge capacity of up to 199.1 mAh g?1 was obtained at a current density of 50 mA g?1 in aqueous solution of 1 M Li2SO4, a value which is much higher than the available reported capacities of vanadium (+5) oxides in aqueous electrolytes.  相似文献   

9.
Hierarchical Na2FeP2O7 spheres with nanoparticles were successfully fabricated by a facile spray drying method. A relatively low drying temperature was introduced in order to form a carbon layer on the surface. As a cathode material for sodium-ion batteries, it delivered a reversible capacity of 84.4 mAh g?1 at 0.1 C and showed excellent cycling and rate performance (64.7 mAh g?1 at 5 C). Furthermore, a full sodium battery was fabricated using SP-Na2FeP2O7 as the cathode and hard carbon as the anode, suffering almost no capacity loss after 400 cycles at 1 C. Due to its superior electrochemical property and the low materials cost, Na2FeP2O7 is becoming a promising cathode material for large-scale energy storage systems.  相似文献   

10.
One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g?1 and still maintains 136.5 mAh g?1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.  相似文献   

11.
The air cathode is the most crucial component for a zinc-air battery (ZAB) system, which inquires fast diffusion of gaseous O2 and decent bifunctional catalytic performance. Herein, based on our previous attempts, we developed a bi-functional electro-catalyst utilizing co-doped manganese dioxide nanotube/carbon nanotube (CNT) composite to improve the catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A simple characterization of the morphology and physicochemical properties of various Co3O4/MnO2/CNT (CMC) composites was performed by employing various techniques (SEM, TEM, and XRD). More importantly, using CMC composite as the bifunctional cathode catalysts, we thoroughly investigated the effects of catalyst loading, bonding layer loading, and spraying area in catalyst layer (CL) on cell performance and charge-discharge cyclic ability for rechargeable zinc-air batteries. The highest peak power density of 400.3 mW cm?2 can be reached when the catalyst loading is 3 mg cm?2, the spraying area is 1 cm2 and the binder content is 80 μL. The rechargeable zinc-air batteries with the air electrodes containing different spraying areas and bonding layer loadings are stably operated for 22 h at a high current density (100 mA cm?2) and show a maximum voltage gap of 1.5 V between charge and discharge voltages. All these optimization efforts are particularly important to future large-scale applications in ZAB.
Graphical abstract ?
  相似文献   

12.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

13.
High-quality monodisperse multiporous hierarchical micro/nanostructured ZnCo2O4 microspheres have been fabricated by calcinating the Zn1/3Co2/3CO3 precursor prepared by urea-assisted solvothermal method. The as-prepared products are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Brunauer-Emmett-Teller (BET) measurement to study the crystal phase and morphology. When tested as anode material for lithium ion batteries, the multiporous ZnCo2O4 microspheres exhibit an initial discharge capacity of 1,369 mAh g?1 (3,244.5 F cm?3) and retain stable capacity of 800 mAh g?1 (1,896 F cm?3) after 30 cycles. It should be noted that the good electrochemical performances can be attributed to the porous structure composed of interconnected nanoscale particles, which can promote electrolyte diffusion and reduce volume change during discharge/charge processes. More importantly, this ZnCo2O4 3D hierarchical structures provide a large number of active surface position for Li+ diffusion, which may contribute to the improved electrochemical performance towards lithium storage.  相似文献   

14.
A novel approach has been made to tailor Niobium pentoxide (Nb2O5) as a coating material on the surface of lithium iron phosphate (LiFePO4) via a facile polyol technique. The coating content was optimized at 1 wt%. The superficial coating demonstrated superior discharge capacity than the pristine LiFePO4. However, increasing the coating content further would result in a capacity loss. This may be due to the electrochemical inactiveness that increases with the content of the coating material, and 1 wt% of Nb2O5-coated LiFePO4 sample exhibits initial discharge capacity of 163 mAh g?1 at a current of 0.1 C and retains a stable discharge capacity of 143 mAh g?1 up to 400 cycles at 1 C rate with a coulombic efficiency of 98%.
Graphical abstract ?
  相似文献   

15.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

16.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

17.
Yuan Xia  Hui Wang 《Ionics》2016,22(2):159-166
Different particle sizes of dodecahedron precursors are synthesized by controlling the polarity of the solution. Through the results of scanning electron microscope (SEM) images, it can be found that different particle sizes of precursors present obvious edge angles and their morphology can be well retained after annealing. X-ray diffraction (XRD) measurements suggest that the annealed polyhedral products are pure single-phase NiCo2O4. When tested as lithium-ion battery anode, 0.5 μm NiCo2O4 polyhedra exhibits a specific capacity of 1050 mAh g?1 at 0.1 C at the 60th cycle, which was higher than theoretical capacity of single metal oxide (NiO 718 mAh g?1 and Co3O4 890 mAh g?1). It also exhibits the highest rate capability with an average discharge capacity of 890, 700, 490, 330, and 300 mAh g?1 at 0.5, 2, 4, 8, and 10 C, respectively. Those advantages are attributed to that small-sized particle with great surface areas decrease the actual current density at the surface and inner of the prepared electrode.  相似文献   

18.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

19.
In the reducing atmosphere of the SOFC anode at operating temperatures of 800 °C and above Nb2TiO7 is reduced to Nb1.33Ti0.67O4. This material displays very high electronic conductivity of >100 Scm−1, suitable for use in such applications as a current collector. It has a low thermal expansion coefficient of 3 × 10−6 K−1, however, which may cause problems due to mismatch with other SOFC components, e.g. YSZ. Doping with Fe2O3 successfully increased the thermal expansion to a maximum of 6 × 10−6 K−1. A conductivity of 140 Scm−1 at 900 °C in dry 5% H2/Ar, with an activation energy of 0.18 eV, was achieved for the Nb1.344Ti0.642Fe0.014O4, making it suitable for the use as a current collector. Conductivity runs in wet 5%H2/Ar showed lower conductivities of 15–18 Scm−1 and lower activation energies of 0.08 − 0.09 eV. Single cell tests of Nb1.33Ti0.67O4 showed power outputs of 5.5 − 7.2 mW·cm−2 at 850 °C, lower than for Ni with 150 − 200 mW·cm−2 at 850 °C, however, this material displayed much better stability at high temperatures than Ni. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002.  相似文献   

20.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号