首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Ramesh  Liew Chiam Wen 《Ionics》2010,16(3):255-262
Composite polymer electrolyte systems composed of poly(methyl methacrylate) (PMMA) as the host polymer, lithium trifluoromethanesulphonate (also known as lithium triflate; LiCF3SO3) as dopant salt, and a variety of different concentrations of nano-sized fumed silica (SiO2) as inorganic filler were studied. The effect upon addition of SiO2 on the ionic conductivity of the composite polymer electrolytes was investigated, and it was proven that the ionic conductivity had been enhanced. In addition, the interfacial stability also showed improvement. Maximum conductivity was obtained upon addition of 2 wt.% SiO2. The complexation of PMMA and LiCF3SO3 was verified through Fourier transform infrared studies. The thermal stability of the polymer electrolytes was also found to improve after dispersion of inorganic filler. This was proven in the thermogravimetric studies.  相似文献   

2.
Shahzada Ahmad 《Ionics》2009,15(3):309-321
Polymer electrolytes are an important component of many electrochemical devices. This paper reviews state-of-the-art of the electrochemical and physical properties of polymer electrolytes. This review mainly encompasses the properties of different salts, solvents, and polymer hosts, which are encaged in liquid electrolytes. The additions of filler in polymer electrolytes result in composite polymer electrolytes, having high mechanical integrity and ionic conductivity, that are ideal electrolyte for these applications. The next generation state-of-the-art room-temperature ionic liquids based electrolytes, which are far superior to corresponding nonionic solvent-based electrolytes, are also discussed. An erratum to this article can be found at  相似文献   

3.
Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al–Zn ferrite, Mg–Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO–7NH4SCN]: X ferrite (where X?=?2% in Al–Zn ferrite, 1% Mg–Zn ferrite, and 1% Zn ferrite) system.  相似文献   

4.
A sequence of novel plasticized polymer nanocomposite electrolyte systems based on polyethylene oxide (PEO) as polymer host, LiCF3SO3 as salt, and a variety of concentrations of nanochitosan as inert filler, succinonitrile as a solid non-ionic plasticizer has been prepared. The prepared membranes were subjected to X-ray diffraction, FT-IR, tensile strength, morphological studies, thermal analysis, AC ionic conductivity measurement, and interfacial analyses. The combined effect of succinonitrile and nanochitosan on the electrochemical properties of polymer electrolytes has been studied, and it was confirmed that the ionic conductivity is significantly increased. The maximum ionic conductivity of the plasticized nanocomposite polymer electrolytes are found to be in the range of 10?2.8?S/cm. Besides, the interfacial stability also shows a significant improvement. The tensile measurement and thermal analysis results illustrate that the electrolytes based on that polymer host possess good mechanical and thermal stabilities.  相似文献   

5.
Das  Avirup  Thakur  A. K. 《Ionics》2017,23(10):2845-2853

Polymer nanocomposite has been proven to improve the property of polymer salt complex. Organo-modified clay and inorganic oxides are the most commonly used filler for polymer nanocomposite (PNC). However, single wall carbon nanotube (SWCNT)/multiwall carbon nanotube (MWCNT) are becoming popular filler for PNC for their high surface area and high mechanical stability. In this work, a series of PNC sample has been prepared by using polyethylene oxide (PEO)-polydimethylsiloxane (PDMS) blend as polymer matrix, an optimized salt stoichiometry of Ö/Li ~15, and surface-modified MWCNT as filler. The effect of ion-polymer and ion-MWCNT interaction in the polymer nanocomposite has been investigated by using XRD, SEM, FTIR, and electrical study. X-ray diffraction pattern confirms the dispersion of MWCNT inside the polymer chain and modifies the structural parameter of the polymer matrix. FTIR spectra indicate inclusion of MWCNT inside the polymer salt complex which changes the ion dissociation/association in the polymer host matrix. Further, the changes in structural, thermal, and electrical property of the polymer salt complex system have been studied by using SEM, DSC, and impedance analysis. Dc conductivity study shows that optimized PNC sample has conductivity of 8.04 × 10−5 S cm−1. This is almost two order enhancement from pure polymer salt system (10−6 S cm−1).

  相似文献   

6.
A solid polymer electrolyte comprising blend of poly(ethylene oxide) and 50% epoxidized natural rubber (ENR50) as a polymer host, LiCF3SO3 as a salt and nanoparticle ZnO as an inorganic filler was prepared by solution-casting technique. The effect of filler on the electrolyte properties was characterized and analysed. FESEM analysis showed that the filler was well distributed in the polymer matrix, while the effective interaction between the salt and the polymer host was reduced by the addition of filler. As evidenced by FTIR analysis, which showed the formation of triplet peak at C-O-C stretching region. Ionic conductivity was found to decrease from 1.4 × 10−4 Scm−1 to 2.5 × 10−6 Scm−1 upon the addition of filler, due to the blocking effect of filler into the electrolyte conduction pathways. The temperature dependence on the electrolyte conductivity obeys Arrhenius rule in two temperature regions.  相似文献   

7.
In order to enhance the ionic conductivity of polyethylene oxide (PEO)–KI(80:20) based alkaline polymer electrolytes, nanosized inorganic filler ZnS has been incorporated into PEO–KI matrix and the corresponding nanocomposite polymer electrolytes are synthesized by the usual solution casting procedure. Atomic force microscope image of composite polymer electrolyte exhibits that the introduction of ZnS nanoparticles changes the surface morphology and aggregates them to form an arborization pattern. The prepared nanocomposite polymer electrolyte reveals an ionic conductivity of about 10?4 S cm?1 for 5 wt% ZnS at room temperature.  相似文献   

8.
The development of magnesium electrolytes for battery applications has been the demand for electrochemical devices. To meet such demand, in this work solid blend polymer electrolytes were prepared using polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) (92.5PVA:7.5PAN) as host polymer, magnesium chloride (MgCl2) of different molar mass percentage (m.m.%) (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6%) as salt and dimethylformamide (DMF) as solvent. Structural, vibrational, thermal, electrical, and electrochemical properties of the prepared electrolytes were investigated using different techniques such as X-ray diffraction pattern, FTIR spectroscopy analysis, differential scanning calorimetry (DSC), AC impedance measurement, and transference number measurement. X-ray diffraction studies confirm the minimum volume fraction of crystalline phase for the polymer electrolyte with 0.5 m.m.% of MgCl2. FTIR confirms the complex formation between host polymer and salt. DSC analysis proves the thermal transition of the prepared films are affected by salt concentration. The optimized material with 0.5 m.m.% of MgCl2 offers a maximum electrical conductivity of 1.01 × 10?3 S cm?1 at room temperature. The Mg2+ ion conduction in the blend polymer electrolyte is confirmed from transference number measurement. Electrochemical analysis demonstrates the promising characteristic of these polymer films suitable as electrolytes for primary magnesium batteries. Output potential and discharge characteristics have been analyzed for primary magnesium battery which is constructed using optimized conducting electrolyte.  相似文献   

9.
Nanocomposite polymer electrolytes (NCPEs) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP) as a host polymer, Poly(vinyl acetate) (PVAc) as an additive, Ethylene Carbonate (EC) as a plasticizer, Lithium Perchlorate as dopant salt and Barium Titanate (BaTiO3) as a filler were prepared for various concentrations of BaTiO3 using solvent casting technique. Thermal stability of the sample having maximum ionic conductivity was found using TG/DTA analysis. Nano composite polymer electrolytes were subjected to ac impedance analysis spectra for acquiring the ionic conductivity values at different temperature. Surface structure of the sample was analysed using scanning electron microscope and the complexations of samples were analysed using X-ray diffraction analysis. It was noted that the polymer electrolyte contains 8 wt. % of BaTiO3 showed maximum ionic conductivity than the other ratios of BaTiO3.  相似文献   

10.
Gel electrolytes and solid electrolytes have been reported as a potential element to slow down the polysulfide shuttle by reducing its mobility in the electrolytes. The preparation of sulfur-conductive polymer composites, or sulfur-carbon composites, has been reported as softening the impact of the shuttle effects. Unlike Li-ion batteries so far, no electrolyte is found to be optimal for Li–S batteries at all conditions. Taking into account all these factors, in the present study, an attempt has been made to develop solid polymer electrolytes in conjunction with non-aqueous liquid electrolytes along with inert fillers for Li–S batteries. Poly-ethylene oxide (PEO)-based composite gel polymer electrolytes (CGPE) comprising a combination of plasticizers, namely 1,3-dioxolane (DIOX)/tetraethylene glycol dimethylether (TEGDME) and a lithium salt (LiTf) with the addition of ceramic filler, barium titanate (BaTiO3) have been prepared using a simple solution casting technique in an argon atmosphere. The as-prepared polymer electrolyte films were subjected to SEM, ionic conductivity, TG/DTA, and FTIR analyses. A symmetric cell composed of Li/CGPE/Li was assembled, and the variation of interfacial resistance as a function of time was also measured. The ionic conductivity was found to be increased as a function of temperature. The lithium transference number (Lit +) was measured, and the value was calculated as 0.7 which is sufficient for battery applications. The electrochemical stability window of the sample was studied by linear sweep voltammetry, and the polymer electrolyte film was found to be stable up to 5.7 V. The TG/DTA analysis reveals that this CGPE is thermally stable up to 350 °C. The compatibility studies exhibited that CGPE has better interracial properties with lithium metal anode. The interaction between the PEO and salt has been identified by an FTIR analysis.  相似文献   

11.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   

12.
The influence of filler particles size on lithium ion conductivity of composite polymer electrolytes was issued on model system vinylidenefluoride with hexafluoropropylene (PVdF-HFP)–Li1.3Al0.3Ti1.7(PO4)3. Model electrolyte objects with filler grains of different sizes were prepared using a modified solvent casting method from a mixture of PVdF-HFP solution in dimethylformamide and Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte particles. The percolation threshold was defined and the transport properties of composite polymer electrolytes at different volume concentrations of the solid electrolyte investigated. A significant decrease in conductivity compared to that of ceramic solid electrolytes was observed. The size of the filler particles was found to affect the structure and transport properties of the prepared composite polymer electrolytes. The conductivity of the composite polymer electrolyte at 100 °C was found to increase by two orders of magnitude with the tenfold increase of the size of the filler particles.  相似文献   

13.
Development and characterisation of polyethylene oxide (PEO)-based nanocomposite polymer electrolytes comprising of (PEO-SiO2): NH4SCN is reported. For synthesis of the said electrolyte, polyethylene oxide has been taken as polymer host and NH4SCN as an ionic charge supplier. Sol–gel-derived silica powder of nano dimension has been used as ceramic filler for development of nanocomposite electrolytes. The maximum conductivity of electrolyte ∼2.0 × 10−6 S/cm is observed for samples containing 30 wt.% silica. The temperature dependence of conductivity seems to follow an Arrhenius-type, thermally activated process over a limited temperature range.  相似文献   

14.
The ionic conductivity and dielectric properties of the solid nanocomposite polymer electrolytes formed by dispersing a low particle-sized TiO2 ceramic filler in a poly (ethylene oxide) (PEO)-AgNO3 matrix are presented and discussed. The solid nanocomposite polymer electrolytes are prepared by hot press method. The optimum conducting solid polymer electrolyte of polymer PEO and salt AgNO3 is used as host matrix and TiO2 as filler. From the filler concentration-dependent conductivity study, the maximum ionic conductivity at room temperature is obtained for 10 wt% of TiO2. The real part of impedance (Z′) and imaginary part of impedance (Z″) are analyzed using an LCR meter. The dielectric properties of the highest conducting solid polymer electrolyte are analyzed using dielectric permittivity (ε′), dielectric loss (ε″), loss tangent (tan δ), real part of the electric modulus (M′), and imaginary part of the electric modulus (M″). It is observed that the dielectric constant (ε′) increases sharply towards the lower frequencies due to the electrode polarization effect. The maxima of the loss tangent (tan δ) shift towards higher frequencies with increasing temperature. The peaks observed in the imaginary part of the electric modulus (M″) due to conductivity relaxation shows that the material is ionic conductor. The enhancement in ionic conductivity is observed when nanosized TiO2 is added into the solid polymer electrolyte.  相似文献   

15.
Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PEG/PAMPS) with a transparent appearance were prepared in the presence of ammonium persulfate (APS) as an initiator at 70 °C for 24 h. PEG/PAMPS-based polymer gel electrolytes in a motionless and uniform state were obtained by adding the required amount of liquid electrolytes to a dry PEG/PAMPS polymer. Liquid electrolytes include organic solvents with high boiling points (-1-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL)) and a redox couple (alkali metal iodide salt/iodine). The optimized conditions for PEG/PAMPS-based gel electrolytes based on the salt type, the concentration of alkali metal iodide salt/iodine, and solvent volume ratio were determined to be NaI, 0.4 M NaI/0.04 M I2, and NMP:GBL (7:3, v/v), respectively. The highest ionic conductivity and the liquid electrolyte absorbency were 2.58 mS cm?1 and 3.6 g g?1 at 25 °C, respectively. The ion transport mechanism in both the polymer gel electrolytes and liquid electrolytes is investigated extensively, and their best fits with respect to the temperature dependence of the ionic conductivity are determined with the Arrhenius equation.  相似文献   

16.
Lithium bis(oxalato)borate (LiBOB) salt-based nanocomposite gel polymer blend electrolyte (PVdF/PVC) membranes have been prepared by solution casting technique for various concentrations of TiO2. The effect of anatase structure of nanosized titanium dioxide in the plasticized PVC/PVdF + LiBOB matrix has been observed in the 2:1 salt filler ratio in the impedance measurements that the conductivity is increased one order of magnitude higher than the filler-free electrolyte (1:0 salt:filler ratio). The phase morphology of this electrolyte membrane represents the appearance of the free volume sites for ionic migration.  相似文献   

17.
Li-ion rechargeable batteries based on polymer electrolytes are of great interest for solid state electrochemical devices nowadays. Many studies have been carried out to improve the ionic conductivity of polymer electrolytes, which include polymer blending, incorporating plasticizers and filler additives in the electrolyte systems. This paper describes the effects of incorporating nano-sized MnO2 filler on the ionic conductivity enhancement of a plasticized polymer blend PMMA–PEO–LiClO4–EC electrolyte system. The maximum conductivity achieved is within the range of 10−3 S cm−1 by optimizing the composition of the polymers, salts, plasticizer, and filler. The temperature dependence of the polymer conductivity obeys the VTF relationship. DSC and XRD studies are carried out to clarify the complex formation between the polymers, salts, and plasticizer.  相似文献   

18.
K. Kumutha  Y. Alias  R. Said 《Ionics》2005,11(5-6):472-476
Chemical modification of natural rubber (NR) has frequently been attempted to improve the performance in specific application. 30% poly (methyl metacrylate) grafted NR (MG 30) has been explored as a potential candidate for polymer electrolytes. The complexation effect of LiCF3SO3, ethylene carbonate (EC) and Al2SiO5 in polymer host electrolytes has been investigated using FTIR ICP-OES spectrometry. Thermal studies of the systems have displayed a stable trend of glass temperature transition at elevated salt concentration whereas incorporation of EC and filler into the system results in the same pattern in their Tg values. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

19.
运用发射FTIR光谱技术,实时监测SBA-15掺杂制备的复合聚合物电解质随温度升高其结晶状态变化的规律,结合电化学和SEM研究结果分析了无机填料对离子电导率的影响,并初步提出离子导电增强的机制。文章将为发射FTIR光谱技术应用于锂电池研究进行了探索。  相似文献   

20.
Asok K. Dikshit 《Ionics》2018,24(1):153-161
Factors affecting the softening temperature of polymer gel electrolytes (PGEs) made from poly(vinylidene fluoride) (PVDF) have been investigated. The melting temperature transition has been found to rise with increased polymer concentration and salt concentration but reduced by solvent dielectric constant. The solvent dielectric constant was reduced by mixing propylene carbonate (PC) with the non-solvent phenyl propanol (PhP). The use of lithium salt bis(oxalate)borate (LiBOB) in place of lithium tetrafluroborote (LiBF4) gives further enhancement to the softening temperature of PGEs. In all of those cases, there is an eventual trade-off between increased softening temperature and reduced ionic conductivity, in this fabricated gel electrolyte. Here, a variety of ways to tailor the properties of PGEs for different applications has been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号