首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The interfacial tensions of mixed α-dipalmitoylphosphatidylcholine (DPPC)/β-lactoglobulin layers at the chloroform/water interface have been measured by the pendent drop and drop volume techniques. In certain intervals, the adsorption kinetics of these mixed layers was strongly influenced by the concentrations of both protein and DPPC. However, at low protein concentration, Cβ-lactoglobulin=0.1 mg l−1, the adsorption rate of mixed interfacial layers was mainly controlled by the variation of the DPPC concentration. As Cβ-lactoglobulin was increased to 0.8 mg l−1, the interfacial activity was abruptly increased, and within the concentration range of CDPPC=10−4–10−5 mol l−1, the DPPC has very little effect on the whole adsorption process. In this case, the adsorption rate of mixed layers was mainly dominated by the protein adsorption. This phenomenon also happened as the protein concentration was further increased to 3.6 mg l−1. When CDPPC>3 · 10–5 mol l−1, the adsorption behaviour was very similar to that of the pure DPPC although the protein concentration was changed. The equilibrium interfacial tensions of the mixed layers are dramatically effected by the lipid as compared to the pure protein adsorption at the same concentration. It reveals the estimation of which composition of lipid and protein decreases the interfacial tension. The combination of Brewster angle microscopy (BAM) with a conventional LB trough was applied to investigate the morphology of the mixed DPPC/β-lactoglobulin layers at the air/water interface. The mixed insoluble monolayers were produced by spreading the lipid at the water surface and the protein adsorbed from the aqueous buffer subphase. The BAM images allow to visualise the protein penetration and distribution into the DPPC monolayer on compression of the complex film. It is shown that a homogeneous distribution of β-lactoglobulin in lipid layers preferentially happens in the liquid fluid state of the monolayer while the protein can be squeezed out at higher surface pressures.  相似文献   

2.
Using CI embedding method, we have studied the adsorption of CO on MgO(1 0 0). The MgO(1 0 0) substrate is described by a Mg9O9 (3 × 3 × 2) core cluster, embedded in ionic (Mg2+/O2−) core potentials. The adsorption energy is calculated to be 0.11 eV at the CI level with a blue shift of 19 cm−1 for CO stretching on MgO(1 0 0). The dispersion accounts only 35% of the total binding energy of CO on MgO(1 0 0). The CO/MgO(1 0 0) interaction is weak and mainly of the van der Waals type with only slight chemical bonding characters.  相似文献   

3.
The adsorption of bovine serum albumin (BSA) on fused silica at pH 4.7 was studied at the single molecules level by total-internal-reflection fluorescence microscopy. This pH value was the isoelectric point of BSA. At low [BSA] of 20 pM, protein molecules adsorbed as monomers. At intermediate [BSA] of 500 pM, protein molecules adsorbed as clusters of about five monomers on average. Both monomers and clusters had adsorption rate coefficients of the order 10−7 m s−1 and desorption rate coefficients of about 2 × 10−2 s−1. The respective steady-state coverage was about 10× higher than that at neutral pH, presumably because of the more favorable BSA–silica electrostatics. At pH 4.7 and with [BSA] higher than 100 nM, adsorption begot further adsorption to produce nonlinear isotherms. The coverage at 1 μM BSA was 2.5× that of the linearly extrapolated coverage. This suggests that at pH 4.7, solute–adsorbate affinity was the dominant factor that explains the enhanced adsorption observed in ensemble measurements.  相似文献   

4.
The adsorption of cyclopentene (c-C5H8) on Ni(1 1 1) was studied using DFT and semiempirical calculations. Preferred site and geometry calculations were carried out considering a Ni(1 1 1) surface and a unit cell of 64-atoms. The tetrahedral threefold hollow position was identified as the most favorable site, with a surface-molecule minimum distance of 1.83 Å. A bending structure is adopted when the molecule is adsorbed where the carbon atoms of the double bond are closer to the surface forming an angle of 160° among non-equivalents carbon atoms. The metal surface was represented by a two-dimensional slab with an overlayer of c-C5H8/Ni of 1/9 ratio. We also computed the density of states (DOS) and the crystal orbital overlap populations (COOP) corresponding to CC, CNi, CH, and NiNi bonds. We found that both NiNi bonds interacting with the ring, and the CC bond are weakened after adsorption, this last bond is linked significantly to the surface. The hydrogen atoms belonging to the saturated carbon atoms also participate in the adsorbate–surface bonding. The main interactions include the 4s, 3pz and 5dz2 bands of nickel and 2pz bands of the carbon atoms of the double bond.  相似文献   

5.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

6.
Li2O–Cr2O3–GeO2–P2O5 based glasses were synthesized by a conventional melt-quenching method and successfully converted into glass-ceramics through heat treatment. Experimental results of DTA, XRD, ac impedance techniques and FESEM indicated that Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics treated at 900 °C for 12 h in the Li1 + xCrxGe2 − x(PO4)3 (x = 0–0.8) system exhibited the best glass stability against crystallization and the highest ambient conductivity value of 6.81 × 10−4 S/cm with an activation energy as low as 26.9 kJ/mol. In addition, the Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics displayed good chemical stability against lithium metal at room temperature. The good thermal and chemical stability, excellent conducting property, easy preparation and low cost make it promising to be used as solid-state electrolytes for all-solid-state lithium batteries.  相似文献   

7.
Pre-adsorbed and bulk (continuous) CO oxidation on a polycrystalline Pt electrode were examined in a wall-jet electrochemical quartz crystal nanobalance (EQCN) setup, using both differential and integral evaluation of the EQCN data, to get further insights into the kinetics and mechanism of this important fuel-cell related electrocatalytic reaction. The hydrogen underpotential adsorption–desorption features in the base cyclic voltammogram of a Pt film are accompanied by significant changes in the electrode mass due H-upd induced desorption–adsorption of anion. In the double-layer region small capacitive currents are accompanied by comparatively large reversible mass changes indicating anion adsorption/desorption (96.5 g mol−1 assigned to bisulfate). OH and oxygen electrosorption from water at potentials more positive of 1.0 V result in relatively small variations in the electrode mass (16 g mol−1 for PtOH and ca. 9 g mol−1 for PtO formation, respectively). The CO-adlayer stripping first leads to the electrode mass decrease in the “pre-peak” region, followed by a fast mass increase within the main stripping peak due to re-adsorption of bisulfate anion (91 g mol−1). A mass-transport limited current for bulk CO oxidation under continuous flow of CO-saturated electrolyte leads to negligible mass changes (0–1 g mol−1) in the PtO region, suggesting that bulk CO oxidation is mediated by electroformed PtO.  相似文献   

8.
Surleva AR  Neshkova MT 《Talanta》2008,76(4):914-921
A new flow injection approach to total weak acid-dissociable (WAD) metal–cyanide complexes is proposed, which eliminates the need of a separation step (such as gas diffusion or pervaporation) prior to the detection. The cornerstone of the new methodology is based on the highly selective flow-injection potentiometric detection (FIPD) system that makes use of thin-layer electroplated silver chalcogenide ion-selective membranes of non-trivial composition and surface morphology: Ag2 + δSe1 − xTex and Ag2 + δSe. An inherent feature of the FIP-detectors is their specific response to the sum of simple CN + Zn(CN)42− + Cd(CN)42−. For total WAD cyanide determination, ligand exchange (LE) and a newly developed electrochemical pre-treatment procedure for release of the bound cyanide were used. The LE pre-treatment ensures complete recovery only when the sample does not contain Hg(CN)42−. This limitation is overcome by implementing electrochemical pre-treatment which liberates completely the bound WAD cyanide through cathodic reduction of the complexed metal ions. A complete recovery of toxic WAD cyanide is achieved in the concentration range from 156 μg L−1 up to 13 mg L−1. A three-step protocol for individual and group WAD cyanide speciation is proposed for the first time. The speciation protocol comprises three successive measurements: (i) of non-treated, (ii) LE-exchange pre-treated; (iii) electrochemically pre-treated sample. In the presence of all WAD complexes this procedure provides complete recovery of the total bound cyanide along with its quantitative differentiation into the following groups: (1) Hg(CN)42−; (2) CN + Cd(CN)42− + Zn(CN)42−; (3) Cu(CN)43− + Ni(CN)42− + Ag(CN)2. The presence of a 100-fold excess in total of the following ions: CO32−, SCN, NH4+, SO42− and Cl does not interferes. Thus the proposed approach offers a step ahead to meeting the ever increasing demand for cyanide-species-specific methods. The equipment simplicity makes the procedure a good candidate for implementing in portable devices for in-field cyanide monitoring.  相似文献   

9.
The formation of quasi-crystalline PtRh two dimensional films supported on Pt{1 0 0} is described. For the first time, the voltammetry of PtRh{1 0 0} single crystal alloys covering the whole range of alloy composition is reported. Synthesis follows a similar procedure to that described previously for the formation of PtPd alloys supported on Pt{h k l} but with some important provisos concerning the final annealing step. CO electrooxidation was used as a probe reaction and for certain PtRh{1 0 0} surface alloys, unusually high electrocatalytic activity was observed relative to monometallic Pt and Rh electrodes. The flame annealing of a “PtRhPt sandwich” precursor structure was found to be the best method of forming the PtRh alloy surfaces. For PtRh films annealed under nitrogen, significant phase separation was observed in agreement with previous surface science studies of PtRh adlayers on Pt{1 0 0} annealed in the absence of oxygen. In addition, an excess of Rh in the “sandwich structure” from which the alloy was formed tended to preclude good alloy formation. It is suggested that the protocols for thin film formation described may prove useful in many other important electrocatalytic systems.  相似文献   

10.
Electroreduction kinetics of to anions at chemically etched (CHE) and electrochemically polished (EP) Bi(1 1 1) electrodes has been studied using rotating disc electrode method. The surface nanostructure of CHE Bi(1 1 1) and EP Bi(1 1 1) electrodes has been studied by in situ STM and the very different values of root mean squared roughness (Rms) have been obtained (1000 times higher for CHE Bi(1 1 1) (Rms  143 nm) than for EP Bi(1 1 1) (Rms  0.145 nm)). The influence of the nanoroughness of CHE Bi(1 1 1) on the current density, heterogeneous reaction rate constant and corrected Tafel plots (cTp) has been demonstrated. For CHE Bi(1 1 1) the more pronounced inhibition of electroreduction reaction at moderate negative surface charge density has been observed in comparison with EP Bi(1 1 1), caused by the differences in surface charge density and also in diffuse layer ψ0 potential drop values at crystallographically different homogeneous regions (planes) exposed at the surface of the macroheterogeneous polycrystalline CHE Bi(1 1 1) surface. The very low apparent transfer coefficient αapp obtained indicates the nearly activationless charge transfer mechanism for electroreduction at the CHE Bi(1 1 1) electrode similarly to EP Bi(1 1 1). However, αapp only very weakly depends on Rms for the Bi electrodes at high negative surface charge densities where the values of ψ0 potential are nearly equal for different planes at fixed electrode potential. At very high negative surface charge densities the cationic catalysis through the adsorbed ion pairs is possible.  相似文献   

11.
The rate of adsorption of oleate soap onto a Nigerian hematite in an aqueous medium was determined from 29 to 60°C using the differential analysis method. The activation energy and frequency factor were determined at 57.1 kJ mol−1 K−1 and 4.0 × 103 liter mol−1 min−1, respectively, indicating that the chemical processes are the slow, rate-determining step and that the reaction proceeds relatively fast. The adsorption isotherm was the Langmuir type: chemisorption was considered the dominant mode of adsorption. The desorption isotherm indicated a minor contribution of physical adsorption to the overall adsorption process.  相似文献   

12.
A poly-amidosulfonic acid and multi-wall carbon nanotubes composite (PASA/MWNTs) modified electrode has been constructed by electropolymerization on glassy carbon electrode (GCE). The electrochemical behaviors of hydroquinone (HQ) and catechol (CC) were investigated using cyclic and differential pulse voltammetries (DPVs) at the prepared electrode. Separation of the reductive peak potentials for HQ and CC was about 120 mV in pH 6.0 phosphate buffer solution (PBS), which makes it suitable for simultaneous determination of these compounds. In the presence of 1.0 × 10−4 mol L−1 isomer, the reductive peak currents of DPV are proportional to the concentration of HQ in the range of 6.0 × 10−6 to 4.0 × 10−4 mol L−1, and to that of CC in the range of 6.0 × 10−6 to 7.0 × 10−4 mol L−1. When simultaneously changing the concentration of both HQ and CC, the linear concentration range of HQ (or CC) is 6.0 × 10−6 to 1.0 × 10−4 mol L−1 (or 6.0 × 10−6 to 1.8 × 10−4 mol L−1), and the corresponding detection limits are 1.0 × 10−6 mol L−1. The proposed method has been applied to simultaneous determination of HQ and catechol in water sample, and the results are satisfactory.  相似文献   

13.
D.F. Zhou  Y.J. Xia  J.X. Zhu  J. Meng   《Solid State Sciences》2009,11(9):1587-1591
Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8) were synthesized by modified sol–gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 °C and 800 °C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15−δ detected to be the best conducting phase with the highest conductivity (σt = 8.93 × 10−3 S cm−1) is higher than that of Ce5.6Sm0.4MoO15−δ (σt = 2.93 × 10−3 S cm−1) at 800 °C, and the corresponding activation energy of Ce5.6Dy0.4MoO15−δ (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15−δ (1.002 eV).  相似文献   

14.
MFI membrane with high permeance was successfully synthesized on the macroporous (pore size of 3–4 μm) α-Al2O3 tubular support with a novel modified secondary growth method. Before the crystallization, the seeded support was wrapped with Teflon tape in order to focalize the growth of crystals in the region of seed layer. The as-synthesized membrane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and single-gas permeation testing. The results indicated that the as-synthesized membrane had a thickness of 6–8 μm similar to the thickness of the seed layer and exhibited high gas permeance. At room temperature, the permeance of H2 and the ideal separation factor of H2/SF6 reached 1.64 × 10−6 mol m−2 s−1 Pa−1 and 71, respectively. The permeance of single-gas increased with the increasing of temperature. The ideal separation factors of H2/i-C4H10 and H2/SF6 decreased with the increasing of temperature from 298 to 473 K. At 473 K, the ideal separation factors of H2/i-C4H10 and H2/SF6 were 12.16 and 11.08, which were still higher than their Knudsen ratios of 5.39 and 8.54, respectively.  相似文献   

15.
The density of seven {(0.0087, 0.0433, 0.1302, 0.2626, 0.4988, 0.7501, and 0.9102) mole fraction of [BMIM][BF4]} binary {methanol (1) + [BMIM][BF4] (2)} (1-butyl-3-methylimidazolium tetrafluoroborate) mixtures has been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from (298 to 398) K and at pressures up to 40 MPa. The total uncertainties of density, temperature, pressure, and concentration measurements was estimated to be less than 0.15 kg · m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The effect of temperature, pressure, and concentration on the density and derived volumetric properties such as excess, apparent, and partial molar volumes was studied. The measured densities were used to develop a Tait-type equation of state for the mixture. The structural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept and the equation of state for the mixture at infinite dilution.  相似文献   

16.
Herein, a novel electrochemical method was developed for the determination of tryptophan based on the poly(4-aminobenzoic acid) film modified glassy carbon electrode (GCE). The electrochemical behaviors of tryptophan at the modified electrode were investigated. It was found that the oxidation peak current of tryptophan at the modified GCE was greatly improved compared with that at the bare GCE. The effects of supporting electrolyte, pH value, scan rate, accumulation potential and time were examined. The oxidation peak current of tryptophan was proportional to its concentration over the range from 1.0 × 10−6 to 1.0 × 10−4 mol L−1. The limit of detection was evaluated to be 2.0 × 10−7 mol L−1. The proposed method was sensitive and simple. It was successfully employed to determine tryptophan in pharmaceutical samples.  相似文献   

17.
This work reports new density data (180 points) of 1-pentanol at twelve temperatures between 293.15 and 403.15 K, and pressures up to 140 MPa (every 10 MPa). A new Anton Paar vibrating-tube densimeter, calibrated with an uncertainty of ±0.5 kg m−3 was used to perform these measurements. The experimental density data were fitted with the Tait-like equation with low standard deviations. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation.  相似文献   

18.
Riaz Qadeer 《Adsorption》2005,11(1):51-55
The kinetics of the adsorption of erbium ions on activated charcoal from aqueous solutions has been studied in the temperature range of 10 to 40∘C. It was observed that the diffusion of erbium ions in to the pores of activated charcoal controls the kinetics of the adsorption process, and the values of intra-particle diffusion rate constant, kd (g/g ⋅ min1/2) were evaluated as 0.7 × 10−3 to 1.6 × 10−3 in the temperature range studied. Various thermodynamic parameters Δ H, Δ G and Δ S were also computed from values of the equilibrium constant KC. The results showed that the adsorption of erbium ions on activated charcoal is an endothermic process.  相似文献   

19.
The adsorption of Saccharomyces cerevisiae mandelated dehydrogenase (SCMD) protein on the surface-modified magnetic nanoparticles coated with chitosan was studied in a batch adsorption system. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface of magnetic Fe3O4 nanoparticles. Characterization of these particles was carried out using FTIR spectra, transmission electron micrography (TEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Magnetic measurement revealed that the magnetic Fe3O4–chitosan nanoparticles were superparamagnetic and the saturation magnetization was about 37.3 emu g−1. The adsorption capacities and rates of SCMD protein onto the magnetic Fe3O4–chitosan nanoparticles were evaluated. The adsorption capacity was influenced by pH, and it reached a maximum value around pH 8.0. The adsorption capacity increased with the increase in temperature. The adsorption isothermal data could be well interpreted by the Freundlich isotherm model. The kinetic experimental data properly correlated with the first-order kinetic model, which indicated that the reaction is the adsorption control step. The apparent adsorption activation energy was 27.62 kJ mol−1 and the first-order constant for SCMD protein was 0.01254 min−1 at 293 K.  相似文献   

20.
The voltammetric behavior of the LMF-Mg(II) complex with DNA at a mercury electrode is reported for the first time. In NH3–NH4Cl buffer (pH=9.10), the adsorption phenomena of the LMF–Mg(II) complex were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be a reduction of LMF in the complex, and the composition of the LMF–Mg(II) complex is 2:1. In the presence of calf thymus DNA (ctDNA), the peak current of LMF–Mg(II) complex decreased considerably, and a new well-defined adsorptive reduction peak appeared at −1.63 V (vs. SCE). The electrochemical kinetic parameters and the binding number of LMF–Mg(II) with ctDNA were also obtained. Moreover, the new peak currents of LMF–Mg(II)–DNA system increased linearly correlated to the concentration of DNA in the 4.00×10−7–2.60×10−6 g ml−1 range when the concentrations of LMF–Mg(II) complex was fixed at 5.00×10−6 mol l−1, with the detection limits of 2.33×10−7 g ml−1. An electrostatic interaction was suggested by electrochemical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号