首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Traditionally, coupled methods have been employed for the computation of compressible flows, whereas segregated methods have been preferred for the computation of incompressible flows. Compared to coupled methods, segregated solvers present the advantage of reduced computer memory and CPU time requirements, although at the cost of an inferior robustness. Therefore, in a series of papers we present unified computational techniques to compute compressible and incompressible flows with segregated stabilized methods. The proposed algorithms have an increased robustness compared to existing techniques, while possessing additional benefits such as employing standard pressure boundary conditions. In this first part, the thermodynamics of isothermal, thermally perfect compressible flows is set up in the framework of symmetric systems and the corresponding segregated algorithms are introduced. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M ≈0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin (DG) discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to an incompressible formulation. Our contributions to the state of the art are twofold: Firstly, we present a high-performance DG solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures with Flop/Byte ratios significantly larger than 1. The performance results presented in this work focus on the node-level performance, and our results suggest that there is great potential for further performance improvements for current state-of-the-art DG implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows. The results indicate a clear performance advantage of the incompressible formulation over the compressible one.  相似文献   

3.
Gas Kinetic Method‐based flow solvers have become popular in recent years owing to their robustness in simulating high Mach number compressible flows. We evaluate the performance of the newly developed analytical gas kinetic method (AGKM) by Xuan et al. in performing direct numerical simulation of canonical compressible turbulent flow on graphical processing unit (GPU)s. We find that for a range of turbulent Mach numbers, AGKM results shows excellent agreement with high order accurate results obtained with traditional Navier–Stokes solvers in terms of key turbulence statistics. Further, AGKM is found to be more efficient as compared with the traditional gas kinetic method for GPU implementation. We present a brief overview of the optimizations performed on NVIDIA K20 GPU and show that GPU optimizations boost the speedup up‐to 40x as compared with single core CPU computations. Hence, AGKM can be used as an efficient method for performing fast and accurate direct numerical simulations of compressible turbulent flows on simple GPU‐based workstations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
High order simulations are necessary in order to capture fine details in resolving supersonic reactive flows. However, high Mach number compressible flows feature sharp gradients and discontinuities, which present a challenge to successful simulations using high order methods. Spectral methods have proven a powerful tool in simulation of incompressible turbulent flows, and recent advances allow the application of spectral methods to compressible reactive flows. We review the recent advances in the theory and application of spectral methods which allow stable computations of discontinuous phenomena, and the recovery of high order information via postprocessing, and present applications of high Mach number reactive flows. To cite this article: D. Gottlieb, S. Gottlieb, C. R. Mecanique 333 (2005).  相似文献   

5.
In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic damping method. The solution algorithm presently under consideration is based on Roe's approximate Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43 : 357–372] for non‐structured meshes. The numerical flux functions are modified by using Turkel's preconditioning technique proposed by Viozat [Implicit upwind schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January 1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization term proposed in the present study. These methods allow the compressible Euler equations at low‐Mach number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed modifications have been assessed by comparison with experimental data and other numerical results in the literature. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
In the present work the multigrid strategy is applied to second-order ENO schemes for the computation of steady compressible flows. The performances of the algorithm are analysed in many flow situations, ranging from low subsonic to high supersonic flows, for both internal and external problems. Three different Riemann solvers were considered in the study of computational efficiency and solution accuracy.  相似文献   

7.
Finite volume schemes for the two-dimensional(2D) wave system are taken to demonstrate the role of the genuine dimensionality of Lax-Wendroff flow solvers for compressible fluid flows. When the finite volume schemes are applied, the transversal variation relative to the computational cell interfaces is neglected, and only the normal numerical flux is used, thanks to the Gauss-Green formula. In order to offset such defects, the Lax-Wendroff flow solvers or the generalized Riemann problem(GRP) solvers are adopted by substituting the time evolution of flows into the spatial variation. The numerical results show that even with the same convergence rate, the error by the GRP2D solver is almost one ninth of that by the multistage Runge-Kutta(RK) method.  相似文献   

8.
An implicit unfactored method for the coupled solution of the compressible Navier–Stokes equations with two-equation turbulence models is presented. Both fluid-flow and turbulence transport equations are discretized by a characteristics-based scheme. The implicit unfactored method combines Newton subiterations and point-by-point Gauss–Seidel subrelaxation. Implicit-coupled and -decoupled strategies are compared for their efficiency in the solution of the Navier–Stokes equations in conjunction with low-Re two-equation turbulence models. Computations have been carried out for the flow over an axisymmetric bump using the k–ϵ and k–ω models. Comparisons have been obtained with experimental data and other numerical solutions. The present study reveals that the implicit unfactored implementation of the two-equation turbulence models reduces the computing time and improves the robustness of the CFD code in turbulent compressible flows. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Several explicit high‐resolution schemes for transient compressible flows with moving shocks are combined in such a way so as to achieve the highest possible speed without compromising accuracy. The main algorithmic changes considered comprise the following:
  • replacing limiting and approximate Riemann solvers by simpler schemes during the initial stages of Runge–Kutta solvers, and only using limiting and approximate Riemann solvers for the last stage;
  • automatically switching to simpler schemes for smooth flow regions;
  • automatic deactivation of quiescent regions; and
  • unstructured grids with cartesian cores or embedded cartesian grids.
The results from several examples demonstrate that speedup factors of 1:4 are attainable without compromising the accuracy of the traditional FCT schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
We consider a problem which arises in the numerical solution of the compressible two-dimensional or axisymmetric boundary-layer equations. Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x, y) plane to a computational (ξ, η) plane in which the evolution of the flow is ‘slow’ in the time-like ξ direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently non-linear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which satisfies the continuity equation nearly to machine precision. As demonstration of the utility of the method, the boundary layers of three prototypical high-speed flows are investigated and compared: the flat plate, the hollow cylinder, and the cone. An important implication for classical linear stability theory is also briefly discussed.  相似文献   

12.
The development of new aeronautic projects require accurate and efficient simulations of compressible flows in complex geometries. It is well known that most flows of interest are at least locally turbulent and that the modelling of this turbulence is critical for the reliability of the computations. A turbulence closure model which is both cheap and reasonably accurate is an essential part of a compressible code. An implicit algorithm to solve the 2D and 3D compressible Navier–Stokes equations on unstructured triangular/tetrahedral grids has been extended to turbulent flows. This numerical scheme is based on second-order finite element–finite volume discretization: the diffusive and source terms of the Navier–Stokes equations are computed using a finite element method, while the other terms are computed with a finite volume method. Finite volume cells are built around each node by means of the medians. The convective fluxes are evaluated with the approximate Riemann solver of Roe coupled with the van Albada limiter. The standard k–ϵ model has been introduced to take into account turbulence. Implicit integration schemes with efficient numerical methods (CGS, GMRES and various preconditioning techniques) have also been implemented. Our interest is to present the whole method and to demonstrate its limitations on some well-known test cases in three-dimensional geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A high‐resolution numerical scheme based on the MUSCL–Hancock approach is developed to solve unsteady compressible two‐phase dilute viscous flow. Numerical considerations for the development of the scheme are provided. Several solvers for the Godunov fluxes are tested and the results lead to the choice of an exact Riemann solver adapted for both gaseous and dispersed phases. The accuracy of the scheme is proven step by step through specific test cases. These simulations are for one‐phase viscous flows over a flat plate in subsonic and supersonic regimes, unsteady flows in a low‐pressure shock tube, two‐phase dilute viscous flows over a flat plate and, finally, two‐phase unsteady viscous flows in a shock tube. The results are compared with well‐established analytical and numerical solutions and very good agreement is achieved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a kind of arbitrary high order derivatives (ADER) scheme based on the generalised Riemann problem is proposed to simulate multi-material flows by a coupling ghost fluid method. The states at cell interfaces are reconstructed by interpolating polynomials which are piece-wise smooth functions. The states are treated as the equivalent of the left and right states of the Riemann problem. The contact solvers are extrapolated in the vicinity of contact points to facilitate ghost fluids. The numerical method is applied to compressible flows with sharp discontinuities, such as the collision of two fluids of different physical states and gas–liquid two-phase flows. The numerical results demonstrate that unexpected physical oscillations through the contact discontinuities can be prevented effectively and the sharp interface can be captured efficiently.  相似文献   

16.
A methodology to perform a ghost-cell-based immersed boundary method (GCIBM) is presented for simulating compressible turbulent flows around complex geometries. In this method, the boundary condition on the immersed boundary is enforced through the use of ‘ghost cells’ that are located inside the solid body. The computations of variables on these ghost cells are achieved using linear interpolation schemes. The validity and applicability of the proposed method is verified using a three-dimensional (3D) flow over a circular cylinder, and a large-eddy simulation of fully developed 3D turbulent flow in a channel with a wavy surface. The results agree well with the previous numerical and experimental results, given that the grid resolution is reasonably fine. To demonstrate the capability of the method for higher Mach numbers, supersonic turbulent flow over a circular cylinder is presented. While more work still needs to be done to demonstrate higher robustness and accuracy, the present work provides interesting insights using the GCIBM for the compressible flows.  相似文献   

17.
A new finite element formulation designed for both compressible and nearly incompressible viscous flows is presented. The formulation combines conservative and non‐conservative dependent variables, namely, the mass–velocity (density * velocity), internal energy and pressure. The central feature of the method is the derivation of a discretized equation for pressure, where pressure contributions arising from the mass, momentum and energy balances are taken implicitly in the time discretization. The method is applied to the analysis of laminar flows governed by the Navier–Stokes equations in both compressible and nearly incompressible regimes. Numerical examples, covering a wide range of Mach number, demonstrate the robustness and versatility of the new method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
We consider Newton–Krylov methods for solving discretized compressible Euler equations. A good preconditioner in the Krylov subspace method is crucial for the efficiency of the solver. In this paper we consider a point‐block Gauss–Seidel method as preconditioner. We describe and compare renumbering strategies that aim at improving the quality of this preconditioner. A variant of reordering methods known from multigrid for convection‐dominated elliptic problems is introduced. This reordering algorithm is essentially black‐box and significantly improves the robustness and efficiency of the point‐block Gauss–Seidel preconditioner. Results of numerical experiments using the QUADFLOW solver and the PETSc library are given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The computation of low speed flows can usualy be performed by incompressible models or various Low Mach number approximations (Boussinesq, Anelastic, etc). However, there is a large number of flows where although the velocities are small, compressible effects cannot be ignored and the use of full compressible models is required.Unfortunately, standard finite element or finite volume method experiences various difficulties in the computation of these low Mach number flows. This talk will explain the origin of these difficulties and describe some techniques to circumvent them.  相似文献   

20.
 A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a “shock wave” preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the xt diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the “soap film shock tube”. Received: 11 May 2000/Accepted: 2 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号