首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a novel Mach‐uniform preconditioning method is developed for the solution of Euler equations at low subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, in the present method, the conservation of energy equation is preconditioned, which enforces the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. Despite most preconditioners, the proposed Mach‐uniform preconditioning method does not have a singularity point at zero Mach number. The preconditioned system of equations preserves the strong conservation form of Euler equations for compressible flows and recovers the artificial compressibility equations in the case of zero Mach number. A two‐dimensional Euler solver is developed for validation and performance evaluation of the present formulation for a wide range of Mach number flows. The validation cases studied show the convergence acceleration, stability, and accuracy of the present Mach‐uniform preconditioner in comparison to the non‐preconditioned compressible flow solutions. The convergence acceleration obtained with the present formulation is similar to those of the well‐known preconditioned system of equations for low subsonic flows and to those of the artificial compressibility method for incompressible flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The ISNaS-project aims at providing tools for computer aided design and engineering in aerodynamics and hydrodynamics by developing an Information System for the simulation of complex flows based on the Navier-Stokes equations. Major components of the project are the development of a method-shell and of accurate as well as robust solvers for both compressible and incompressible flows. For the incompressible case, guided by typical applications in the field of river and coastal hydrodynamics, a solution procedure is being developed that is capable of handling complicated geometries, including free surface effects, in particular for high-Reynolds number flow regimes. In the present paper the invariant discretization of the incompressible Navier-Stokes equations in general boundary-fitted coordinate systems is discussed. It is found to be important that certain rules are followed concerning the choice of unknowns and the approximation of the geometric quantities. This is illustrated by some preliminary results. Extensions to moving coordinate systems and time-varying computational grids are indicated.  相似文献   

3.
We propose a pressure‐based unified solver for gas‐liquid two‐phase flows where compressible and incompressible flows coexist. Unlike the original thermo–Cubic Interpolated Propagation Combined Unified Procedure (CIP‐CUP) method proposed by Himeno et al (Transactions of the Japan Society of Mechanical Engineers, Series B, 2003), we split the advection term of the governing equations into a conservation part and into the rest. The splitting of advection term has two advantages. One is the high degree of freedom in choosing discretization schemes such as central‐difference schemes, upwind schemes, and Total Variation Diminishing (TVD) schemes. The other is the ease of implementation on unstructured grids. The advantages enable the analyses of various flows such as turbulent and supersonic ones in actual complicated boundaries. Therefore, the solver is useful for practical analyses. The solver was validated on the following test cases: subsonic single‐phase flows, incompressible single‐phase turbulent flows, and incompressible gas‐liquid two‐phase flows. With unstructured grids, we obtained the equivalent results as the ones with structured grids. After the validations, subsonic jet impinging on a water pool was calculated and compared with experimental results. It was confirmed that the calculated results were consistent with the experimental ones.  相似文献   

4.
In the present study, a weakly compressible formulation of the Navier-Stokes equations is developed and examined for the solution of fluid-structure interaction (FSI) problems. Newtonian viscous fluids under isothermal conditions are considered, and the Murnaghan-Tait equation of state is employed for the evaluation of mass density changes with pressure. A pressure-based approach is adopted to handle the low Mach number regime, ie, the pressure is chosen as primary variable, and the divergence-free condition of the velocity field for incompressible flows is replaced by the continuity equation for compressible flows. The approach is then embedded into a partitioned FSI solver based on a Dirichlet-Neumann coupling scheme. It is analytically demonstrated how this formulation alleviates the constraints of the instability condition of the artificial added mass effect, due to the reduction of the maximal eigenvalue of the so-called added mass operator. The numerical performance is examined on a selection of benchmark problems. In comparison to a fully incompressible solver, a significant reduction of the coupling iterations and the computational time and a notable increase in the relaxation parameter evaluated according to Aitken's Δ2 method are observed.  相似文献   

5.
Gas Kinetic Method‐based flow solvers have become popular in recent years owing to their robustness in simulating high Mach number compressible flows. We evaluate the performance of the newly developed analytical gas kinetic method (AGKM) by Xuan et al. in performing direct numerical simulation of canonical compressible turbulent flow on graphical processing unit (GPU)s. We find that for a range of turbulent Mach numbers, AGKM results shows excellent agreement with high order accurate results obtained with traditional Navier–Stokes solvers in terms of key turbulence statistics. Further, AGKM is found to be more efficient as compared with the traditional gas kinetic method for GPU implementation. We present a brief overview of the optimizations performed on NVIDIA K20 GPU and show that GPU optimizations boost the speedup up‐to 40x as compared with single core CPU computations. Hence, AGKM can be used as an efficient method for performing fast and accurate direct numerical simulations of compressible turbulent flows on simple GPU‐based workstations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The approach to determine pressure fields and integral loads from planar velocimetry data is discussed, in relation to the implementation for incompressible and compressible flows around two-dimensional objects. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure field from the experimental data, by making use of the flow constitutive equations. In this paper the implementation for two specific application areas is addressed. The first is time-mean pressure field and force evaluation from velocity ensemble statistics, as obtained from time-uncorrelated PIV acquisition, for incompressible flow. Two test cases are considered for this flow regime: the unsteady vortical flow around a square section cylinder at incidence, as well as the force characterization of a low-speed airfoil. The second topic considers the extension of the method to steady compressible flow, with the supersonic flow around a bi-convex airfoil as experimental test case. As in this flow regime the density appears as an extra unknown in the momentum equation, additional flow equations need to be invoked. A convenient approach for this was found, using the gas law and the adiabatic flow condition, with which the pressure-integration procedure becomes essentially the same as for the incompressible case.  相似文献   

7.
The paper's leitmotiv is condensed in one word: robustness. This is a real hindrance for the successful implementation of any multigrid scheme for solving the Navier–Stokes set of equations. In this paper, many hints are given to improve this issue. Instead of looking for the best possible speed‐up rate for a particular set of problems, at a given regime and in a given condition, the authors propose some ideas pursuing reasonable speed‐up rates in any situation. In a previous paper, the authors presented a multigrid method for solving the incompressible turbulent RANS equations, with particular care in the robustness and flexibility of the solution scheme. Here, these concepts are further developed and extended to compressible laminar and turbulent flows. This goal is achieved by introducing a non‐linear multigrid scheme for compressible laminar (NS equations) and turbulent flow (RANS equations), taking benefit of a convenient master–slave implementation strategy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Typically, segregated methods have been used for the computation of incompressible flows whereas coupled solvers, for compressible flows. Compared to coupled solvers, segregated methods present the advantage of computational savings in RAM memory and CPU time, although at the cost of an inferior robustness. However, previously published segregated algorithms for general compressible flows are known to present pitfalls, like convergence to wrong solutions, lack of robustness in the presence of strong discontinuities, such as normal and oblique shocks, and complicated boundary condition imposition. Therefore, in this paper a segregated method for non‐isothermal compressible flows is proposed that preserves the thermodynamic coupling and overcomes the criticisms of existing methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
亚、跨、超音速及不可压流动的数值分析方法的研究   总被引:4,自引:0,他引:4  
为了对亚、跨、超音速及不可压无粘流动进行数值模拟,将LU-SGS方法与预处理方法结合,给出了PLU-SGS方法。方程离散基于有限体积法,采用高阶精度AUSMPW格式。方程求解采用了特征边界条件。通过典型算例的数值试验对比分析,表明PLU-SGS方法可以有效地对亚、跨、超音速及不可压流动进行数值模拟,并具有较高的计算精度和收敛速度。  相似文献   

10.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper addresses the numerical solution of turbulent flows with high‐order discontinuous Galerkin methods for discretizing the incompressible Navier‐Stokes equations. The efficiency of high‐order methods when applied to under‐resolved problems is an open issue in the literature. This topic is carefully investigated in the present work by the example of the three‐dimensional Taylor‐Green vortex problem. Our implementation is based on a generic high‐performance framework for matrix‐free evaluation of finite element operators with one of the best realizations currently known. We present a methodology to systematically analyze the efficiency of the incompressible Navier‐Stokes solver for high polynomial degrees. Due to the absence of optimal rates of convergence in the under‐resolved regime, our results reveal that demonstrating improved efficiency of high‐order methods is a challenging task and that optimal computational complexity of solvers and preconditioners as well as matrix‐free implementations are necessary ingredients in achieving the goal of better solution quality at the same computational costs already for a geometrically simple problem such as the Taylor‐Green vortex. Although the analysis is performed for a Cartesian geometry, our approach is generic and can be applied to arbitrary geometries. We present excellent performance numbers on modern cache‐based computer architectures achieving a throughput for operator evaluation of 3·108 up to 1·109 DoFs/s (degrees of freedom per second) on one Intel Haswell node with 28 cores. Compared to performance results published within the last five years for high‐order discontinuous Galerkin discretizations of the compressible Navier‐Stokes equations, our approach reduces computational costs by more than one order of magnitude for the same setup.  相似文献   

13.
Traditionally, coupled methods have been employed for the computation of compressible flows, whereas segregated methods have been preferred for the computation of incompressible flows. Compared to coupled methods, segregated solvers present the advantage of reduced computer memory and CPU time requirements, although at the cost of an inferior robustness. Therefore, in a series of papers we present unified computational techniques to compute compressible and incompressible flows with segregated stabilized methods. The proposed algorithms have an increased robustness compared to existing techniques, while possessing additional benefits such as employing standard pressure boundary conditions. In this first part, the thermodynamics of isothermal, thermally perfect compressible flows is set up in the framework of symmetric systems and the corresponding segregated algorithms are introduced. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We present a parallel fully implicit algorithm for the large eddy simulation (LES) of incompressible turbulent flows on unstructured meshes in three dimensions. The LES governing equations are discretized by a stabilized Galerkin finite element method in space and an implicit second-order backward differentiation scheme in time. To efficiently solve the resulting large nonlinear systems, we present a highly parallel Newton-Krylov-Schwarz algorithm based on domain decomposition techniques. Analytic Jacobian is applied in order to obtain the best achievable performance. Two benchmark problems of lid-driven cavity and flow passing a square cylinder are employed to validate the proposed algorithm. We then apply the algorithm to the LES of turbulent flows passing a full-size high-speed train with realistic geometry and operating conditions. The numerical results show that the algorithm is both accurate and efficient and exhibits a good scalability and parallel efficiency with tens of millions of degrees of freedom on a computer with up to 4096 processors. To understand the numerical behavior of the proposed fully implicit scheme, we study several important issues, including the choices of linear solvers, the overlapping size of the subdomains, and, especially, the accuracy of the Jacobian matrix. The results show that an exact Jacobian is necessary for the efficiency and the robustness of the proposed LES solver.  相似文献   

15.
A high-order discontinuous Galerkin (DG) method is proposed in this work for solving the two-dimensional steady and unsteady incompressible Navier-Stokes (INS) equations written in conservative form on arbitrary grids. In order to construct the interface inviscid fluxes both in the continuity and in the momentum equations, an artificial compressibility term has been added to the continuity equation for relaxing the incompressibility constraint. Then, as the hyperbolic nature of the INS equations has been recovered, the local Lax-Friedrichs (LLF) flux, which was previously developed in the context of hyperbolic conservation laws, is applied to discretize the inviscid term. Unlike the traditional artificial compressibility method, in this work, the artificial compressibility is introduced only for the construction of the inviscid numerical fluxes; therefore, a consistent discretization of the INS equations is obtained, irrespective of the amount of artificial compressibility used. What is more, as the LLF flux can be obtained directly and straightforward, no numerical iteration for solving an exact Riemann problem is entailed in our method. The viscous term is discretized by the direct DG method, which was developed based on the weak formulation of the scalar diffusion problems on structured grids. The performance and the accuracy of the method are demonstrated by computing a number of benchmark test cases, including both steady and unsteady incompressible flow problems. Due to its simplicity in implementation, our method provides an attractive alternative for solving the INS equations on arbitrary grids.  相似文献   

16.
A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.  相似文献   

17.
In this paper we consider symmetric and antisymmetric periodic boundary conditions for flows governed by the incompressible Navier-Stokes equations. Classical periodic boundary conditions are studied as well as symmetric and antisymmetric periodic boundary conditions in which there is a pressure difference between inlet and outlet. The implementation of this type of boundary conditions in a finite element code using the penalty function formulation is treated and also the implementation in a finite volume code based on pressure correction. The methods are demonstrated by computation of a flow through a staggered tube bundle.  相似文献   

18.
This paper presents a framework for the application of the discontinuous Galerkin(DG) finite element method to the multi-physics simulation of the solid thermal deformation interacting with incompressible flow problems in two-dimensions. Recent applications of the DG method are primarily for thermoelastic problems in a solid domain or fluid-structure interaction problems without heat transfer. Based on a recently published conjugate heat transfer solver, the incompressible Navier-Stokes equation, the fluid advection-diffusion equation, the Boussinesq term, the solid heat equation and the solid linear elastic equation are solved using an explicit DG formulation. A Dirichlet-Neumann partitioning strategy has been implemented to achieve the data exchange process via the numerical flux computed at interface quadrature points in the fluid-solid interface. Formal hp convergence studies employing the method of manufactured solutions demonstrate that the expected order of accuracy is achieved for each solver. The algorithm is then further validated against several existing benchmark cases including the in-plane loaded square, the Timoshenko Beam, the laminated beam subject to thermal-loads and the lid-driven cavity with a flexible bottom wall. The computational effort demonstrates that for all cases the highest order accurate algorithm has several magnitudes lower error than the second-order schemes for a given computational effort. It is a strong justification for the development of such high order discretisations. The solver can be employed to predict thermal deformation of a structure due to convective and conductive heat transfer at low Mach, such as chip deformation on a printed circuit board, wave-guide structure optimization, thermoelectric cooler simulation, and optics mounting method verification.  相似文献   

19.
In the present study, a high-order compact finite-difference lattice Boltzmann method is applied for accurately computing 3-D incompressible flows in the generalized curvilinear coordinates to handle practical and realistic geometries with curved boundaries and nonuniform grids. The incompressible form of the 3-D nineteen discrete velocity lattice Boltzmann method is transformed into the generalized curvilinear coordinates. Herein, a fourth-order compact finite-difference scheme and a fourth-order Runge-Kutta scheme are used for the discretization of the spatial derivatives and the temporal term, respectively, in the resulting 3-D nineteen discrete velocity lattice Boltzmann equation to provide an accurate 3-D incompressible flow solver. A high-order spectral-type low-pass compact filtering technique is applied to have a stable solution. All boundary conditions are implemented based on the solution of the governing equations in the 3-D generalized curvilinear coordinates. Numerical solutions of different 3-D benchmark and practical incompressible flow problems are performed to demonstrate the accuracy and performance of the solution methodology presented. Herein, the 2-D cylindrical Couette flow, the decay of a 3-D double shear wave, the cubic lid-driven cavity flow with nonuniform grids, the flow through a square duct with 90° bend and the flow past a sphere at different flow conditions are considered for validating the present computations. Numerical results obtained show the accuracy and robustness of the present solution methodology based on the implementation of the high-order compact finite-difference lattice Boltzman method in the generalized curvilinear coordinates for solving 3-D incompressible flows over practical and realistic geometries.  相似文献   

20.
T. Yabe 《Shock Waves》1991,1(3):187-195
A universal numerical solver commonly usable for compressible and incompressible fluids is proposed. The method approaches the MAC algorithm at very high sound speed and continuously approaches the algorithm for compressible fluid with decreasing sound speed. The advection term is treated by the CIP algorithm which was previously proposed. A single program is applied to one- and two-dimensional shock-tube problems, and two-dimensional liquid flow inside a cavity at high Reynolds number.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号