首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly selective poly(vinyl chloride) (PVC) membrane electrodes based on bis(2-mercaptobenzoxazolato)mercury(II) [Hg(MBO)2] and bis(2-pyridinethiolato)mercury(II) [Hg(PT)2] complexes as new carriers for thiocyanate-selective electrodes are reported. The electrodes were prepared by coating the membrane solution containing PVC, plasticizer, carriers and additives on the surface of graphite electrodes. Influence of the membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. Both sensors exhibited Nernstian responses towards thiocyanate over a wide concentration range of 1×10−6 to 0.1 M, with slopes of 60.6±0.8 and 57.5±1.2 mV per decade of thiocyanate concentration for Hg(MBO)2 and Hg(PT)2 carriers, respectively, over a wide pH range of 3-11. The limit of detection for both electrodes was ∼6×10−7 M. The sensors have response times of ≤5 s and can be used for at least 2 months without any considerable divergence in their potential response. The proposed electrodes show fairly good discrimination of thiocyanate over several inorganic and organic anions. The electrodes were successfully applied to direct determination of thiocyanate in saliva and as indicator electrodes in precipitation titrations.  相似文献   

2.
《Analytical letters》2012,45(9):1714-1735
Abstract

Highly selective poly(vinyl chloride) (PVC) membrane electrode based on recently synthesized mercury complex i.e., phenyl mercury (II) (2‐mercaptobezothiozolate) (PMMBT) as new carrier for iodide‐selective electrode by incorporating the membrane ingredients on the surface of graphite electrode are reported. The effect of various parameters including the membrane composition, pH, and possible interfering anions were investigated on the response properties of the electrode. The developed sensor exhibited Nernstian responses toward iodide over a wide concentration range of 1×10?7 to 0.1 M with slopes of 57.6±0.8 mV per decade of iodide concentration and detection limit of 8×10?8 M, over a wide pH ranges of 2.0–11.5. The sensors have response time of 0.5 s and can be used for at least 2 months without any considerable divergence in their potential response. The proposed electrode show good ability to discriminate iodide over several inorganic and organic anions.

The electrode was successfully applied to direct determination of iodide in synthetic mixture, waste water and drinking water, and pharmaceutical samples in addition to applying as indicator electrode in precipitation titration.  相似文献   

3.
《Electroanalysis》2003,15(18):1476-1480
Three nickel(II)‐hexaazacyclotetradecane complexes were studied to characterize their abilities as perchlorate ion carrier in PVC membrane electrodes. The electrodes based on these complexes exhibit Nernstian responses for ClO over very wide concentration ranges (1.0×10?1 ?5.0×10?7 M) with detection limits of 2.0×10?7 ?5.0×10?7 M (20–50 ng/mL). The sensors show very good selectivity for ClO ion in comparison with the most common organic and inorganic anions. The responses of the proposed electrodes are independent of pH in the range of 3.5–11.0. The perchlorate selective membranes show fast response time (<10 s) and can be used for 4–12 weeks without any major deviation. The sensors were successfully used to determine the perchlorate ion in water, wastewater and human urine samples.  相似文献   

4.
A PVC membrane electrode for Hg(II) ions, based on a new cone shaped calix[4]arene (L) as a suitable ionophore was constructed. The sensor exhibits a linear dynamic in the range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 29.4 ± 0.4 mV decade?1, and a detection limit of 4.0 × 10?7 M. The response time is quick (less than 10 s), it can be used in the pH range of 1.5–4, and the electrode response and selectivity remained almost unchanged for about 2 months. The sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, and some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Hg2+ ions with potassium iodide, and the direct determination of mercury content of amalgam alloy and water samples.  相似文献   

5.
《Electroanalysis》2003,15(10):872-877
A new PVC membrane electrode for HSO3? anion based on bis‐urea calix[4]diquinones I–VI as neutral ionophores is prepared. Of the various membranes prepared, the membrane based on calix[4]diquinone III exhibits a linear stable response over a wide concentration range (6.0×10?5?1.0×10?2) with a slope of ?51.5 mV/decade and a detection limit of 2.2×10?6 M. With the exception of HSO3? anion, the remainder of the anions responds based on their hydrophobicity. The membrane revealed improved selectivity coefficients for HSO3? over a wide variety of other anions, and the comparable selectivity for the HSO3?selective membranes is iodide anion.  相似文献   

6.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

7.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

8.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

9.
《Electroanalysis》2006,18(10):1019-1027
A new PVC membrane potentiometric sensor for Ag(I) ion based on a recently synthesized calix[4]arene compound of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐dihydroxy‐calix[4]arene‐thiacrown‐4 is developed. The electrode exhibits a Nernstian response for Ag(I) ions over a wide concentration range (1.0×10?2?1.0×10?6 M) with a slope of 53.8±1.6 mV per decade. It has a relatively fast response time (5–10 s) and can be used for at least 2 months without any considerable divergence in potentials. The proposed electrode shows high selectivity towards Ag+ ions over Pb2+, Cd2+, Co2+, Zn2+, Cu2+, Ni2+, Sr2+, Mg2+, Ca2+, Li+, K+, Na+, NH4+ ions and can be used in a pH range of 2–6. Only interference of Hg2+ is found. It is successfully used as an indicator electrode in potentiometric titration of a mixture of chloride, bromide and iodide ions.  相似文献   

10.
The 3‐amion‐5‐mercapto‐1,2,4‐triazole cobalt(II) [Co(II)AMETR] was used as a new carrier for preparing polymeric membrane selective sensor which exhibited high affinity for iodide ion. The effects of membrane composition, pH, the influence of lipophilic ion additives and plasticizer on the response characteristics of the sensor were investigated. The sensor showed a near Nernstian slope of ?56.6 mV/decade for I? ion over a wide concentration range from 8.5×10?7 to 1.0×10?1 M with a low detection limit of 5.1×10?7 M. The sensor has a fast response time and could be used over a wide pH range of 2–8. The response mechanism is discussed in view of the AC impedance technique. The sensor was successfully applied to direct determination of iodide content in environmental water samples and mouth wash samples.  相似文献   

11.
Two new highly selective triiodide electrodes have been prepared using charge‐transfer complex of iodine with cryptand 222 as an electroactive ionophore and nitrophenyl octyl ether as a plasticizing agent. The electrodes showed Nernstian response to triiodide ions over a concentration range from 1.0 × 10?;2 — 7.9 × 10?;7 M and from 1.0 × 10?;2 — 1 × 10?;6 M with detection limits of 6.3 × 10?;7 and 7.9 × 10?;7 M for cryptand and its charge‐transfer complex with iodine, respectively. The response times (t95%) of the sensors were 10 and 5 s. The membrane could be used for more than 1 month without any divergence in potentials. The proposed sensors exhibited very high selectivity for triiodide ion over other anions, and could be used in a wide pH range ?2–10. These electrodes were successfully applied as an indicator electrode in potentiometric titration of copper in ore samples.  相似文献   

12.
A PVC membrane electrode for copper(II) ion based on a recently synthesized Schiff base as a suitable ion carrier was constructed. The electrode exhibits a Nernstian slope of 28.3 ± 0.6 mV per decade of Cu2+ over a wide concentration range of 7.0 × 10?6‐2.6 × 10?2 M with a detection limit of 5.0 × 10?6M in the pH range of 4.2–5.8. The response time is about 10s and it can be used for at least 1 month without any considerable divergence in potential. It was successfully applied as an indicator electrode in the potentiometric titration of copper ions.  相似文献   

13.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

14.
A new poly(vinyl chloride) (PVC) membrane ion‐selective electrode based on bis‐salicyladehyde‐diaminjodipropylamine (BSDDA) as an ion carrier was successfully applied to the detection of Hg2+ ions. This electrode displayed good selectivity toward Hg2+ in comparison with other metal ions and exhibited a Nernstian slope of 30.5 ± 0.4 mV per decade of Hg2+ over a concentration range of 9.5 × 10?7 to 6.4 × 10?2 M of Hg2+ in the pH range 1.5 to 3.5. The detection limit was 7.0 ± 0.2 × 10?7 M and response time was about 10 s to 25 s. The electrode can be used at least 2 months without apparent divergence in potential. In addition, the effects of experimental parameters such as membrane composition, nature and amounts of plasticizer and additive were investigated. The proposed electrode could be used as an indicator electrode in the detection of Hg2+ in samples.  相似文献   

15.
Anion‐selective solvent polymeric membrane based on hydrogen bond‐forming, neutral ionophores with amide or acyl‐hydrazine groups are described. The use of the two calix[4]arenes results in anion‐selective electrodes with a selectivity for phosphate. The electrodes of the optimum characteristic have the composition of 1 wt% ionophore, 66 wt% o‐NPOE, 33 wt% poly (vinyl chloride) (PVC) and TDMACl (15 or 30 mol% relative to the ionophore 1 and 2 , respectively). The optimized membrane electrodes show Nernstian responses towards monohydrogen phosphate (?29.1 and ?29.3 mV/decade) based on ionophore 1 and 2 , respectively, in a wide concentration range (1.0×10?5 to 1.0×10?2 or 1.0×10?5 to 1.0×10?1 M). The selectivity coefficients are determined with the fixed interference method and the activity ratio method. The electrodes display an anti‐Hofmeister series selectivity pattern and highly selective for HPO42? over Cl?, Br?, CH3COO?, NO3? and SO42?. The lifetime of the electrodes is at least 1 month and their response time is found to be 25 s. The proposed sensors could be put to analytical use both by direct potentiometry as well as potentiometric titration.  相似文献   

16.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

17.
A new chromium(III) PVC membrane sensor incorporating ptertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water.  相似文献   

18.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

19.
Two new PVC membrane electrodes that are highly selective to Ag(I) ions were prepared using (L1) calyx[4]arene (L2) as two suitable neutral carriers. The silver(I) ion selective electrodes exhibit a good response for silver ion over a wide concentration range of 1.0 × 10−1 to 4.2 × 10−6 M (L1) and 1.0 × 10−1 to 6.5 × 10−6 M (L2) with a Nernstian slope of 60 mV per decade (L1) and 58 mV per decade (L2) at 25°C, and was found to be very selective, precise, and usable within the pH range 4.0–8.0. They have a response time of <15 s and can be used for at least 3 months without any measurable divergence in potential. The proposed sensors show a fairly good discriminating ability towards Ag+ ion in comparison to some hard and soft metal ions. The electrodes were used as indicator electrodes in the potentiometric titration of silver ion and in the determination of Ag+ in photographic emulsion and radiographic and photographic films. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 7, pp. 862–868. The article is published in the original.  相似文献   

20.
A novel PVC‐based membrane sensor based on 2,6‐(p‐N,N‐dimethylaminophenyl)‐4‐phenylthiopyrylium perchlorate (DAPP) is described. The electrode exhibits a sub‐Nernstian response to 1‐(beta‐hydroxyethyl)‐2‐methyl‐5‐nitroimidazole (metronidazol) over a relatively wide concentration range (1.0 × 10?1 to 1.0 × 10?5 M) with a detection limit of 8.0 × 10?6 M. The best performance was obtained with the membrane containing 30% poly (vinyl chloride), 50% dibutyl phthalate, 7% DAPP and 13% oleic acid. It has a fast response time (< 30 s) and can be used for at least four weeks without any major deviation. The proposed sensor revealed very good selectivity for metronidazole over a wide variety of common cations, anions and amino acids and could be used in the pH range of 6.0–7.5. It was successfully used for direct determination of metronidazole in an oral synthetic antiprotozoal as an antibacterial agent, in metronidazole tablets, and metronidazole injections and metronidazole gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号