首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The first gadolinium-based mixed-metal nitride clusterfullerenes Gd(x)Sc(3-x)N@C(80) (I) (1, x=2; 2, x=1) have been successfully synthesized by the reactive gas atmosphere method and isolated facilely by recycling high-performance liquid chromatography (HPLC). The sum yield of 1 and 2 is 30-40 times higher than that of Gd(3)N@C(80) (I). Moreover, an enhanced relative yield of 2 over the Sc(3)N@C(80) (I) is achieved under the optimized synthesis conditions. According to the UV/Vis/NIR spectroscopic characterization, 1 and 2 are both stable fullerenes with large optical band-gaps while 1 has higher similarity to Gd(3)N@C(80) (I) and 2 resembles Sc(3)N@C(80) (I). The vibrational structures of 1 and 2 are studied by Fourier-transform infrared (FTIR) spectroscopy as well as density functional theory (DFT) computations. In particular, the structures of the encaged Gd(x)Sc(3-x)N clusters within 1 and 2 are analyzed.  相似文献   

2.
The high-yield synthesis of Dy3N@C80 (I) opens the possibility of characterizing its molecular and vibrational structures. We report on the structure determination of Dy3N@C80 (I) by X-ray crystallographic study of single crystal of Dy3N@C80.Ni(OEP).2C6H6, revealing a nearly planar Dy3N cluster encapsulated in an Ih-C80 cage. The vibrational structure of Dy3N@C80 (I) is studied by Fourier transform infrared (FTIR) and Raman spectroscopy in combination with force-field calculations. A correlation was found between the antisymmetric metal-nitrogen stretching vibration and the structure of the M3N cluster of M3N@C80 (I) (M = Y, Gd, Tb, Dy, Ho, Er, Tm). Moreover, a stronger interaction between the encaged nitride cluster and the C80 carbon cage was found in the class II M3N@C80 (I) (M = Y, Gd, Tb, Dy, Ho, Er, Tm) than in Sc3N@C80 (I). This study demonstrates that the cluster size plays the dominating role in the structure of the M3N cluster in M3N@C80 (I).  相似文献   

3.
Using relativistic and on-site correlation-corrected density functional theory, we have investigated the structural and magnetic properties of recently synthesized Gd3N@C80. The most stable structure of Gd3N@C80 has the three magnetic Gd ions pointing to the centers of hexagons in C80. The magnetic ground state of this structure has the three coplanar spins (S = 7/2) offset by 120 degrees angles. At the same time, the state with the highest multiplicity, where all the spins are parallel aligned, is found only about 4.5 meV higher in energy. Therefore, at room temperature, we expect Gd3N@C80 to be paramagnetic with the spin fluctuating between different multiplicities. As a result, Gd3N@C80 may exhibit greater proton relaxivity than Gd@C60 and Gd@C82 and serve as a possible candidate for the next generation of commercially available magnetic resonance imaging contrast agents.  相似文献   

4.
The electronic and vibrational structure of the nitride clusterfullerene Tm3N@C80 (I) was investigated by cyclic voltammetry, FTIR, Raman, and X-ray photoemission spectroscopy. The electrochemical energy gap of Tm3N@C80 (I) is 1.99 V, which is 0.13 V larger than that of Sc3N@C80 (I). FTIR spectroscopy showed that the C80:7 (I(h)) cages in Tm3N@C80 (I), Er3N@C80 (I), Ho3N@C80 (I), Tb3N@C80 (I), Gd3N@C80 (I), and Y3N@C80 (I) have the same bond order. The analysis of low-energy Raman spectra points to two uniform force constants which can be used to describe the interaction between the encaged nitride cluster and the C80:7 (I(h)) cage in M3N@C80 (I) (M = Tm, Er, Ho, Tb, Gd, and Y). Because the M3N-C80 bond strength is strongly dependent on the charge of the metal ions, this is a direct hint for a 3+ formal valence state of the metal ions in these nitride clusterfullerene series, including Tm3N@C80 (I). Photoemission spectra of the Tm 4d core level and the Tm 4f valence electrons provided a direct proof for a (4f)12 electronic configuration of the encapsulated thulium. In conclusion, thulium in Tm3N@C80 (I) has a formal electronic ground state of +3, in contrast to the +2 state found in Tm@C82. It is demonstrated that the valence state of metal atoms encaged in fullerenes can be controlled by the chemical composition of the endohedral fullerene.  相似文献   

5.
In this paper we report enhanced reactivity of the D(5h) isomers in comparison with the more common I(h) isomers of Sc(3)N@C(80) and Lu(3)N@C(80) toward Diels-Alder and 1,3-dipolar tritylazomethine ylide cycloaddition reactions. Also, the structure of the D(5h) isomer of Sc(3)N@C(80) has been determined through single-crystal X-ray diffraction on D(5h)-Sc(3)N@C(80).Ni(OEP).2benzene (OEP = octaethylporphyrin). The Sc(3)N portion of D(5h)-Sc(3)N@C(80) is strictly planar, but the plane of these four atoms is tipped out of the noncrystallographic, horizontal mirror plane of the fullerene by 30 degrees . The combination of short bond length and high degree of pyramidization for the central carbon atoms of the pyracylene sites situated along a belt that is perpendicular to the C(5) axis suggests that these are the sites of greatest reactivity in the D(5h) isomer of Sc(3)N@C(80). Consistent with the observation of higher reactivity observed for the D(5h) isomers, cyclic voltammetry and molecular orbital (MO) calculations demonstrate that the D(5h) isomers have slightly smaller energy gaps than those of the I(h) isomers. The first mono- and bis-adducts of D(5h) Sc(3)N@C(80) have been synthesized via 1,3-dipolar cycloaddition of tritylazomethine ylide. The NMR spectrum for the monoadduct 2b is consistent with reaction at the 6,6-ring juncture in the pyracylene unit of the D(5h) Sc(3)N@C(80) cage and is the thermodynamically stable isomer. On the other hand, monoadduct 2a undergoes thermal conversion to other isomeric monoadducts, and three possible structures are proposed.  相似文献   

6.
Li-Hua Gan  Ruo Yuan 《Chemphyschem》2006,7(6):1306-1310
To provide insight into the influence of encaged clusters on the structures and stability of trimetallic nitride fullerenes (TNFs), extensive density functional theory calculations were performed on Sc3N@C80, Y3N@C80, and La3N@C80 as well as their encaged clusters. The calculated results demonstrated that both Sc3N and Y3N units are planar, whereas La3N units are pyramidal inside C80-I(h), and that both of the Y3N@C80 and La3N@C80 cages deform considerably in the planes of Y3 and La3. The calculated results suggest that M-cage attraction/repulsion and M-M repulsion interactions determine the geometries of these three complex molecules and the dynamics of the corresponding encaged clusters. These calculated findings distinctly reveal the influence of the size of the encaged clusters on the structures and stability of TNFs and may rationalize their significant differences in yields and chemical reactivity.  相似文献   

7.
The synthesis, isolation and spectroscopic characterization of holmium-based mixed metal nitride clusterfullerenes Ho(x) Sc(3-x) N@C(80) (x=1, 2) are reported. Two isomers of Ho(x) Sc(3-x) N@C(80) (x=1, 2) were synthesized by the reactive gas atmosphere method and isolated by multistep recycling HPLC. The isomeric structures of Ho(x) Sc(3-x) N@C(80) (x=1, 2) were characterized by laser-desorption time-of-flight (LD-TOF) mass spectrometry and UV/Vis/NIR, FTIR and Raman spectroscopy. A comparative study of M(x) Sc(3-x) N@C(80) (M=Gd, Dy, Lu, Ho) demonstrates the dependence of their electronic and vibrational properties on the encaged metal. Despite the distinct perturbation induced by 4f(10) electrons, we report the first paramagnetic (13) C?NMR study on Ho(x) Sc(3-x) N@C(80) (I; x=1, 2) and confirm I(h) -symmetric cage structure. A (45) Sc NMR study on HoSc(2) N@C(80) (I, II) revealed a temperature-dependent chemical shift in the temperature range of 268-308?K.  相似文献   

8.
High-performance liquid chromatography was used to isolate two new trimetallic nitride endohedral fullerenes, Gd3N@C2n (n = 42 and 44), and they were characterized by MALDI-TOF mass spectrometry, UV-vis-NIR, and cyclic voltammetry. It was found that their electronic HOMO-LUMO gaps depend pronouncedly on the size of the cage, from a large band gap for Gd3N@C80 (2.02 V) to a small band gap for Gd3N@C88 (1.49 V). The electrochemical properties also change dramatically with the size of the cage, going from irreversible for the C80 cage to reversible for Gd3N@C88. The latter is the largest trimetallic cluster inside C88 isolated and characterized to date. Gd3N@C88 has one of the lowest electrochemical energy gaps for a nonderivatized metallofullerene.  相似文献   

9.
In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc(3)N@I(h)-C(80) and its D(5h) counterpart Sc(3)N@D(5h)-C(80) , and the (bio)chemically relevant lutetium- and gadolinium-based M(3)N@I(h)/D(5h)-C(80) EMFs (M = Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels-Alder cycloaddition of s-cis-1,3-butadiene on all the different bonds of the I(h)-C(80) and D(5h)-C(80) cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc(3)N@C(80). Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D(5h)-b, which is the most similar to the unique [5,6] bond type in the icosahedral cage, I(h)-a, is the most reactive bond in M(3)N@D(5h)-C(80) regardless of M. Sc(3)N@C(80) and Lu(3)N@C(80) give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M = Gd, as previously found in similar metallofullerenes. Calculations also show that the D(5h) isomer is more reactive from the kinetic point of view than the I(h) one in all cases which is in good agreement with experiments.  相似文献   

10.
Cluster and spin dynamics of a Sc(3)N@C(80)(CF(3))(2) derivative are studied by DFT in different charge states, from -3 to +1. For the neutral Sc(3)N@C(80)(CF(3))(2), static DFT computations of many cluster conformers as well as Born-Oppenheimer molecular dynamics (BOMD) show that addition of two CF(3) groups to Sc(3)N@C(80) significantly changes dynamics of the Sc(3)N cluster: instead of free rotation as in Sc(3)N@C(80), the cluster in Sc(3)N@C(80)(CF(3))(2) exhibits only hindered motions. Similar cluster dynamics is found in the mono- and trianions of Sc(3)N@C(80)(CF(3))(2), while free rotation of the cluster is found in the cation. In the radical species, motions of the cluster dramatically change spin-density distribution. Spin populations of the metal atoms and the carbon cage are followed along the BOMD trajectories to reveal the details of the spin-flow. (45)Sc ESR hyperfine coupling constants integrated over BOMD trajectories are found to be substantially different from the results of static DFT computations, which emphasizes that cluster dynamics should be taken into account for reliable predictions of spectroscopic properties.  相似文献   

11.
This research represents initial functionalization of a Gd3N@C80 metallic nitride fullerene (MNF). Results demonstrate that a bisadduct can be prepared in an isolable yield for this MRI precursor MNF. This Gd3N@C80 bisadduct is synthesized and purified, and preliminary characterization is reported. This is a significant finding as, to date, only MNF monoadducts have been purified.  相似文献   

12.
Chemical reactivity of sc3n @ c80 and la2 @ c80   总被引:2,自引:0,他引:2  
Sc3N@C80 has a lower thermal reactivity than La2@C80, although Sc3N@C80 has the same carbon cage (Ih) and oxidation state (C806-) as La2@C80. This result is attributed to the difference in the energy level and distribution of LUMO between Sc3N@C80 and La2@C80.  相似文献   

13.
Fullerene crystals or films have drawn much interest because they are good candidates for use in the construction of electronic devices. The results of theoretical calculations revealed that the conductivity properties of I(h)-C(80) endohedral metallofullerenes (EMFs) vary depending on the encapsulated metal species. We experimentally investigated the solid-state structures and charge-carrier mobilities of I(h)-C(80) EMFs La(2)@C(80), Sc(3)N@C(80), and Sc(3)C(2)@C(80). The thin film of Sc(3)C(2)@C(80) exhibits a high electron mobility μ = 0.13 cm(2) V(-1) s(-1) under normal temperature and atmospheric pressure, as determined using flash-photolysis time-resolved microwave conductivity measurements. This electron mobility is 2 orders of magnitude higher than the mobility of La(2)@C(80) or Sc(3)N@C(80).  相似文献   

14.
The production, isolation, and spectroscopic characterization of a new Dy3N@C80 cluster fullerene that exhibits three isomers (1-3) is reported for the first time. In addition, the third isomer (3) forms a completely new C80 cage structure that has not been reported in any endohedral fullerenes so far. The isomeric structures of the Dy3N@C80 cluster fullerene were analyzed by studying HPLC retention behavior, laser desorption time-of-flight (LD-TOF) mass spectrometry, and UV-Vis-NIR and FTIR spectroscopy. The three isomers of Dy3N@C80 were all large band-gap (1.51, 1.33, and 1.31 eV for 1-3, respectively) materials, and could be classified as very stable fullerenes. According to results of FTIR spectroscopy, the Dy3N@C80 (I) (1) was assigned to the fullerene cage C80:7 (I(h)), whereas Dy3N@C80 (II) (2) had the cage structure of C80:6 (D(5h)). The most probable cage structure of Dy3N@C80 (III) (3) was proposed to be C80:1 (D(5d)). The significant differences between Dy3N@C80 and other reported M3N@C80 (M = Sc, Y, Gd, Tb, Ho, Er, Tm) cluster fullerenes are discussed in detail, and the strong influence of the metal on the nitride cluster fullerene formation is concluded.  相似文献   

15.
Reported herein are computations on the relative concentrations of the two experimentally known isomers of Sc3N@C80 , that is, those produced by encapsulation of Sc3N in two particular C80 cages that obey the isolated-pentagon rule, namely, with I(h) and D(5h) symmetries. The calculations are based on density functional methods and have been carried out using the Gibbs energy over a broad temperature interval. It has been computed that, if a relatively free motion of the encapsulate inside the cages is allowed, the observed populations of 10 and 17 % for the D(5h) Sc3N@C80 species are reached at temperatures of 2100 and 2450 K, respectively. The inclusion of the entropy term is essential as, if it is neglected, the D(5h) Sc3N@C80 population at a temperature of 2100 K would be a mere 1 %, owing to the relatively large interisomeric separation potential energy of 19 kcal mol(-1).  相似文献   

16.
A family of highly stable (poly)perfluoroalkylated metallic nitride cluster fullerenes was prepared in high-temperature reactions and characterized by spectroscopic (MS, (19)F NMR, UV-vis/NIR, ESR), structural and electrochemical methods. For two new compounds, Sc(3)N@C(80)(CF(3))(10) and Sc(3)N@C(80)(CF(3))(12,) single crystal X-ray structures are determined. Addition pattern guidelines for endohedral fullerene derivatives with bulky functional groups are formulated as a result of experimental ((19)F NMR spectroscopy and single crystal X-ray diffraction) studies and exhaustive quantum chemical calculations of the structures of Sc(3)N@C(80)(CF(3))(n) (n = 2-16). Electrochemical studies revealed that Sc(3)N@C(80)(CF(3))(n) derivatives are easier to reduce than Sc(3)N@C(80), the shift of E(1/2) potentials ranging from +0.11 V (n = 2) to +0.42 V (n = 10). Stable radical anions of Sc(3)N@C(80)(CF(3))(n) were generated in solution and characterized by ESR spectroscopy, revealing their (45)Sc hyperfine structure. Facile further functionalizations via cycloadditions or radical additions were achieved for trifluoromethylated Sc(3)N@C(80) making them attractive versatile platforms for the design of molecular and supramolecular materials of fundamental and practical importance.  相似文献   

17.
While the trimetallic nitrides of Sc, Y and the lanthanides between Gd and Lu preferentially template C(80) cages, M(3)N@C(80), and while those of Ce, Pr and Nd preferentially template the C(88) cage, M(3)N@C(88), we show herein that the largest metallic nitride cluster, La(3)N, preferentially leads to the formation of La(3)N@C(96) and to a lesser extent the La(3)N@C(88). This is the first time that La(3)N is successfully encapsulated inside fullerene cages. La(3)N@C(2n) metallofullerenes were synthesized by arcing packed graphite rods in a modified Kr?tschmer-Huffman arc reactor, extracted from the collected soot and identified by mass spectroscopy. They were isolated and purified by high performance liquid chromatography (HPLC). Different arcing conditions were studied to maximize fullerene production, and results showed that yields have a high La(2)O(3)/C dependence. Relatively high yields were obtained when a 1:5 ratio was used. Three main fractions, La(3)N@C(88), La(3)N@C(92), and La(3)N@C(96), were characterized by UV/Vis-NIR and cyclic voltammetry. Unlike other trimetallic nitride metallofullerenes of the same carbon cage size, La(3)N@C(88) exhibits a higher HOMO-LUMO gap and irreversible reduction and oxidation steps.  相似文献   

18.
The isomers of gadolinium scandium mixed-metal nitride clusterfullerenes GdxSc3-xN@C(80) [x=2 (1, 4); x=1 (2, 5)] have been synthesized by the "reactive gas atmosphere" method and isolated facilely by recycling HPLC. The yield of GdxSc3-xN@C80 (I, II) (x=1, 2) relative to the homogenous clusterfullerenes Sc3N@C80 [I (3), II (6)] was determined. According to the UV/Vis/NIR spectroscopic data, 1, 2, 4, and 5 are all stable fullerenes with large optical gaps. Fullerene 1 has greater similarity to Gd3N@C80 (I) and 2 seems to resemble Sc3N@C80 (I). The quite similar overall absorption features of 4 and 5 suggest pronounced similarity in electronic structure. Vibrational spectroscopic studies led to the assignment of the cage symmetries of GdxSc3-xN@C80 (I, II), that is, Ih for 1, 2 and D5h for 4, 5. The cluster-cage interactions in GdxSc3-xN@C80 (I, II) were analyzed by means of the low-energy Raman lines. The splitting of the metal-nitrogen stretching vibrational mode in GdxSc3-xN@C80 (I, II) was studied in detail. Scalar-relativistic DFT calculations were performed to reveal the geometry parameters and the magnetic state of the GdxSc3-xN@C80 (I, II) molecules.  相似文献   

19.
A computational study on the experimentally detected Sc(3)N@C(68) cluster is reported, involving quantum chemical analysis at the B3LYP/6-31G level. Extensive computations were carried out on the pure C(68) cage which does not conform with the isolated pentagon rule (IPR). The two maximally stable C(68) isomers were selected as initial Sc(3)N@C(68) cage structures. Full geometry optimization leads to a confirmation of an earlier assessment of the Sc(3)N@C(68) equilibrium geometry (Nature 2000, 408, 427), namely an eclipsed arrangement of Sc(3)N in the C(68) 6140 frame, where each Sc atom interacts with one pentagon pair. From a variety of theoretical procedures, a D(3h) structure is proposed for the free Sc(3)N molecule. Encapsulated into the C(68) enclosure, this unit is strongly stabilized with respect to rotation within the cage. The complexation energy of Sc(3)N@C(68) cage is found to be in the order of that determined for Sc(3)N@C(80) and exceeding the complexation energy of Sc(3)N@C(78). The cage-core interaction is investigated in terms of electron transfer from the encapsulated trimetallic cluster to the fullerene as well as hybridization between these two subsystems. The stabilization mechanism of Sc(3)N@C(68) is seen to be analogous to that operative in Sc(3)N@C(78). For both cages, C(68) and C(78), inclusion of Sc(3)N induces aromaticity of the cluster as a whole.  相似文献   

20.
The electrosynthetic method has been used for the selective synthesis of fullerene derivatives that are otherwise not accessible by other procedures. Recent attempts to electrosynthesize Sc(3)N@I(h)-C(80) derivatives using the Sc(3)N@I(h)-C(80) dianion were unsuccessful because of its low nucleophilicity. Those results prompted us to prepare the Sc(3)N@C(80) trianion, which should be more nucleophilic and reactive with electrophilic reagents. The reaction between Sc(3)N@C(80) trianions and benzal bromide (PhCHBr(2)) was successful and yielded a methano derivative, Sc(3)N@I(h)-C(80)(CHPh) (1), in which the >CHPh addend is selectively attached to a [6,6] ring junction, as characterized by MALDI-TOF mass spectrometry and NMR and UV-vis-NIR spectroscopy. The electrochemistry of 1 was studied using cyclic voltammetry, which showed that 1 exhibits the typical irreversible cathodic behavior of pristine Sc(3)N@I(h)-C(80), resembling the behavior of other methano adducts of Sc(3)N@I(h)-C(80). The successful synthesis of endohedral metallofullerene derivatives using trianionic Sc(3)N@I(h)-C(80) and dianionic Lu(3)N@I(h)-C(80), but not dianionic Sc(3)N@I(h)-C(80), prompted us to probe the causes using theoretical calculations. The Sc(3)N@I(h)-C(80) trianion has a singly occupied molecular orbital with high spin density localized on the fullerene cage, in contrast to the highest occupied molecular orbital of the Sc(3)N@I(h)-C(80) dianion, which is mainly localized on the inside cluster. The calculations provide a clear explanation for the different reactivities observed for the dianions and trianions of these endohedral fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号