首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jun Xie 《哲学杂志》2013,93(11):820-832
Abstract

Ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and hydrogen-free amorphous carbon (a-C) films of similar thickness deposited by filtered cathodic vacuum arc (FCVA) were subjected to rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to study the structural stability of the films. While RTA increased the thickness of the intermixing layer and decreased the sp3 content of the a-C:H films, it did not affect the thickness or the sp3 content of the a-C films. The superior structural stability of the FCVA a-C films compared with PECVD a-C:H films, demonstrated by the TEM and EELS results of this study, illustrates the high potential of these films as protective overcoats in applications where rapid heating is critical to the device functionality and performance, such as heat-assisted magnetic recording.  相似文献   

2.
Metastable induced electron spectroscopy (MIES), Ultraviolet photoelectron spectroscopy (UPS), and X-ray photoelectron spectroscopy (XPS) are employed to study the adsorption of water on Ca and CaO films as well as the adsorption of oxygen on Ca films. Ca films are prepared by evaporation of Ca onto clean Si(1 0 0) substrates. CaO films are produced by Ca evaporation in an oxygen atmosphere at a substrate temperature of 400 °C. Gas adsorption on the Ca films at room temperature, both for oxygen and water, is initiated by complete dissociation of the impinging molecules leading to the formation of Ca–O bonds. Exposure to water furthermore leads to the formation of hydroxyl groups via hydrogen abstraction from water forming a complete surface layer. Hydroxyl groups are also formed upon exposure of CaO films to water, but to a significantly smaller amount compared to Ca films exposed to water.  相似文献   

3.
In this paper, we report structural, morphological, electrical studies of copper iodide (CuI) thin films deposited onto glass substrates by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) methods. CuI thin films were characterized for their structural, morphological and wettability studies by means of X-ray diffraction (XRD), FT-Raman spectroscopy, scanning electron microscopy (SEM), optical absorption, and contact angle measurement methods. Thickness of thin films was 1 ± 0.1 μm measured by gravimetric weight difference method. The CuI thin films were nanocrystalline, with average crystal size of ~60 nm. The FT-IR study confirmed the formation of CuI on the substrate surface. SEM images revealed the compact and cube like structure for CuI thin films deposited by CBD and SILAR methods, respectively. Optical absorption study revealed optical energy gaps as 2.3 and 3.0 eV for CBD and SILAR methods, respectively. Wettability study indicated that CuI thin films deposited by SILAR method are more hydrophobic as compared to CBD method.  相似文献   

4.
An improved method has been implemented to study the refection of optical plane waves from anisotropic and absorbing films. The refection from anisotropic non-absorbing films and from isotropic non-absorbing films can be shown as some special cases. The method in this paper can be applied to almost all kinds of materials involved in optical films and integrated optics studies. Guided waves in the anisotropic and absorbing waveguides are determined, and the prism coupler method is employed to determine refractive indices and thickness of the anisotropic and absorbing films. The results show that when we only couple light beams into films with small effective indices, the effect of the absorption can be neglected.  相似文献   

5.
Comb-like PEMLn polymers with pendent PEG-PLLA side chains were synthesized as tissue anti-adhesion barriers. The comb-like structure improved the flexibility of the films. Fluorescent polymer-biocompatible polymer guest-host materials were printed on the films as marking dots. Without sacrificing rats on different days after surgery, degradation behaviors of the marked films can be investigated non-invasively in the in-vivo imaging system (IVIS) by monitoring the location of fluorescent signals. Degradation properties of PEML1/G26L35 films were adjusted by incorporating G26L35 oligomers. PEML1 and PEML1/G26L35 films were very effective in preventing post-surgical tissue-adhesions. Degradation behaviors of various films observed in the animal study were consistent with those investigated by the in-vivo imaging method. Fluorescent polymer/biocompatible polymer blends were promising candidates for in-vivo imaging applications.  相似文献   

6.
Abstract

An improved method has been implemented to study the refection of optical plane waves from anisotropic and absorbing films. The refection from anisotropic non-absorbing films and from isotropic non-absorbing films can be shown as some special cases. The method in this paper can be applied to almost all kinds of materials involved in optical films and integrated optics studies. Guided waves in the anisotropic and absorbing waveguides are determined, and the prism coupler method is employed to determine refractive indices and thickness of the anisotropic and absorbing films. The results show that when we only couple light beams into films with small effective indices, the effect of the absorption can be neglected.  相似文献   

7.
Carbon-nanotube films are very efficient cathodes for field-emission devices. This study presents a comprehensive comparison between structural, spectroscopic and field-emission properties of films of aligned and non-aligned multi-wall nanotubes (MWNTs) which are grown by thermal chemical vapour deposition. Three types of films are investigated: vertically aligned MWNTs with clean and coated nanotube side walls as well as non-aligned MWNT films. Raman spectra taken on the aligned MWNT films consist of many lines of first-, second- and third-order signals. Several lines are reported here for the first time for MWNTs. The presence of the surface coating leads to a decrease and broadening of the higher-order signals as well as an increase in the disorder-induced contributions in the first-order regime. The aligned MWNT films have excellent field-emission properties with very high emission current densities and low turn-on and threshold fields. The presence of a surface coating has no impact on the efficiency of the field-emission process. Films of non-aligned MWNTs show considerably reduced electron-emission current densities and larger critical fields. Received: 25 April 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

8.
Cadmium sulphide (CdS) thin films were prepared chemical bath deposition technique. The films were doped with copper using the direct method consisting in the addition of a copper salt in the deposition bath of CdS. The doped films were annealed in air, at 250, 300 and 350 °C, for 1 h. The deposition films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX) and optical properties of CdS thin films before and after Cu doping. XRD analysis shows that the films are polycrystalline in nature with cubic crystalline structure. The various parameters such as crystallite size, micro strain and dislocation density were evaluated. SEM study shows that the total substrate surface is well covered by uniformly distributed spherical shaped grains. Optical transmittance study shows the presence of direct transition with band gap energy decrease 2.5–2.2 eV.  相似文献   

9.
Sputtered lithium zinc ferrite films were studied using transmission electron microscopy to investigate the microstructure morphology and its correlation with the observed magnetic properties as a function of annealing temperature and time. The present study showed that the films contain nanocrystallites. The observed magnetic order in the films is because of inter granular coupling through low angle grain boundaries. The anomalous magnetic properties observed earlier in these films can be explained on the basis of the presence of large grain boundary volume.  相似文献   

10.
Polystyrene (PS) films are used in packaging and biomedical applications because of their transparency and good environmental properties. The present investigation is centered on the antifungal and antibacterial activities involved in the film surface. Subsequently, microbial formations were immobilized on the modified PS films. Living microorganisms such as bacteria and yeast were used. Untreated PS films show very fast rate of growth of bacteria within few hours. The study involves developments of polymer surfaces with bacterial growth and further studies after giving antibacterial treatment such as plasma treatment. Major emphasis has been given to study the effect of various parameters which can affect the performance of the improved material. Films were prepared by two methods: plasma treatment under vacuum and under ongoing He-Ne laser source. The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied. It was observed that plasma treatment of the PS material for different processing time improved the surface properties of PS films.   相似文献   

11.
Molybdenum(Mo) thin films, most commonly used as electrical back contacts in Cu(In?Ga)Se2(CIGS) solar cells, are deposited by rf and dc magnetron sputtering in identical systems to study the discrepancy and growth mechanisms of the two sputtering techniques. The results reveal that though different techniques generally de?posit films with different characteristic properties, Mo films with similar structural and physical properties can be obtained at respective suitable deposition conditions. Highly adhesive and conductive Mo films on soda lime glass are further optimized, and the as-fabricated solar cells reach efficiencies as high as 9.4% and 9.1% without an antireflective layer.  相似文献   

12.
We report on the syntheses of nanostructured Pt films with three different feature sizes of 3, 6 and 9 nm and their effects to the surface enhance Raman spectroscopy of rhodamine 6G (Rh6G) analytes. The syntheses of the Pt films have been achieved through templating the pore structures of mesoporous silica thin films (MSTFs). For the purpose of the present study, we synthesized three MSTFs with pore sizes 3, 6 and 9 nm. Other than the pore sizes, the silica thin films have the same pore structures. The Pt films have been synthesized by depositing Pt into the pores of the template MSTFs and removing the templates after the deposition. The Pt films produce strong Raman spectra of Rh6G with the intensity increasing as the feature size of the Pt film increases. Simulations of the induced electromagnetic fields on the Pt films show the same trend as the observed Raman intensity with the feature size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Results of the study of optical and magneto-optical properties of MnSbBi(Pt, Co) films in a spectral region of 360–820 nm are reported. It is shown that the multilayer MnSbBi(Pt, Co) films obtained by magnetron sputtering possess considerable optical rotation in the geometry of the polar Kerr effect, which is as large as 0.5°–0.7° upon 5-h annealing of the films at 350°C. The spectral dependences measured for the magnitude of the polar Kerr effect showed that these films may be used for laser data recording in the short-wavelength spectral region, which substantially increases the recording density. Studies of the film structure by X-ray and electron diffraction analysis showed that the films have a polycrystalline structure, with granules 15–40 nm in size. Possible causes of a large magnitude of Kerr effect are analyzed.  相似文献   

14.
Thin oxide films lend themselves as model supports for studies in heterogeneous catalysis, for example, to study the growth and reaction of metal deposits (atoms, clusters and nanoparticles). If the thickness of the film is chosen appropriately these thin films are reasonable models to mimic the situation of bulk materials. If thin films below a critical thickness are studied these materials exhibit properties in their own right. Their structural properties may be tuned to control their functional characteristics. Possible implications for heterogeneous catalysis are discussed.  相似文献   

15.
Flexible magnetic devices, i.e., magnetic devices fabricated on flexible substrates, are very attractive in applications such as detection of magnetic field in an arbitrary surface, non-contact actuators, and microwave devices, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Flexible magnetic films are essential for the realization of various functionalities of flexible magnetic devices. To give a comprehensive understanding for flexible magnetic films and related devices, recent advances in the study of flexible magnetic films are reviewed, including fabrication methods, magnetic and transport properties of flexible magnetic films, and their applications in magnetic sensors, actuators, and microwave devices. Our aim is to foster a comprehensive understanding of these films and devices. Three typical methods have been introduced to prepare the flexible magnetic films, by deposition of magnetic films on flexible substrates, by a transfer and bonding approach or by including and then removing sacrificial layers. Stretching or bending the magnetic films is a good way to apply mechanical strain to them, so that magnetic anisotropy, exchange bias, coercivity, and magnetoresistance can be effectively manipulated. Finally, a series of examples is shown to demonstrate the great potential of flexible magnetic films for future applications.  相似文献   

16.
Zinc oxide (ZnO) nano/microfibrous thin films were successfully synthesized by a catalyst free solution route on glass and Si substrates. X-ray diffraction study revealed the formation of ZnO nanofibers of hexagonal crystalline structure. The texture coefficient of different planes varied with annealing temperature and that of the (0 0 2) plane was the highest for films annealed at temperature 873 K. Scanning electron micrograph showed the well formation of ZnO nano/microfibers with an average diameter 500 nm and having an average aspect ratio 150. UV–Vis–NIR spectroscopic study for the films deposited on glass substrates showed the high transmittance in the visible and near-infrared region. It was also observed that the band gap energy decreased as the films were annealed at higher temperature. The band gap energies of nanostructured ZnO thin films were determined to be in the range 3.03–3.61 eV. The photoluminescence study showed an UV emission peak at 397 nm, a visible blue–green emission peak at 468 nm and a green emission peak at 495 nm. Field emission properties of nanofiber ZnO thin film showed considerably low turn-on field around 1.4 V/μm. The emission current was as high as 70 μA at the field of 3.6 V/μm.  相似文献   

17.
In this study a series of polyimide (PI) films were synthesized from fluorinated and nonfluorinated monomers which contained diamines and dianhydrides. The influence of fluorine-containing groups on the glass transition temperature (T g) and tribological properties of the PI films was investigated. The wear mechanism for the different kinds of PI polymers was comparatively discussed. T g was characterized by dynamic mechanical analysis and the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy (SEM) analysis of the worn surfaces. Fourier transform infrared (FTIR) has been used to study the structures of the PI polymers. Experimental results indicated that the fluorine groups influenced the thermal behavior (T g) of the PI films. Nonfluorinated PI films have lower friction coefficient and wear rate compared with the fluorinated ones. It was also found that the tribological properties of the PI films were closely related with the applied load. The friction coefficients and wear rates reduced with increasing the applied load.  相似文献   

18.
张锐  张代贤  张帆  何振  吴建军 《物理学报》2013,62(2):25207-025207
为了研究脉冲等离子体推力器羽流污染特性,把握脉冲等离子体推力器羽流沉积薄膜性质,利用质谱仪对推力器羽流残余气体成分进行了分析,利用红外傅里叶光谱、光电子能谱及紫外可见光分光光度计对推力器羽流区阴极侧不同方位角处沉积薄膜的结构及光学性质进行了诊断研究结果表明,推力器羽流中主要存在C,F,CF,CF2和CF3气体分子;在各方位角处脉冲等离子体推力器羽流沉积生成了低氟碳比碳氟薄膜;沉积薄膜微观结构以30°角为界在羽流不同区域中具有不同的变化趋势;羽流沉积薄膜具有对波长小于500 nm的光低透射率及增强反射率的光学特性,受薄膜性质的影响,其光学特性具有极大的角度依赖性.  相似文献   

19.
CdSe thin films have been electrodeposited potentiostatically onto stainless-steel and fluorine-doped tin oxide-coated glass substrates from an aqueous acidic bath using cadmium acetate ((CH3COO)2Cd·2H2O) as a Cd ion source. Preparative parameters such as deposition potential, solution concentration, bath temperature, pH of the electrolytic bath and deposition time have been optimized by using photoelectrochemical (PEC) technique to obtain well adherent and uniform thin films. The electrodeposits were dark brown in colour. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques. XRD studies reveal that films are polycrystalline, with hexagonal crystal structure. SEM shows that the films are compact, with spherical grains. Optical absorption studies reveal that the material exhibits a direct optical transition having band gap energy ∼1.72 eV. PEC study shows that the films are photoactive.  相似文献   

20.
Nano-Ag particles, with dodecylamine (DDA) and dodecanethiol (DDT) as the protective agent, were prepared and studied in order to investigate the effect of protective agent in the post heat-treatment of nano-Ag films. Results of electrical resistivity, micro-structural evolution and thermal analysis showed that the Ag-DDA films require a lower treatment temperature to convert into conductive materials compared to that of the Ag-DDT films. And the Ag-DDA films also have lower final electrical resistivity as well as more uniform and dense microstructure in comparison with the Ag-DDT films. Further study indicated that Ag-DDA films are thermodynamically unstable and the sinter of Ag-DDA particles could occur spontaneously even at room temperature. FT-IR, 1H NMR and X-ray diffraction determinations revealed that both DDA and DDT molecules coordinate to the surface of nano-Ag particles through their head-groups. The bonding energy of Ag-S is higher than that of Ag-N and the alkyl chains ordering of chemisorbed DDT is also higher than that of chemisorbed DDA. It is implied that the post heat-treatment temperature and final resistivity of nano-Ag films are associated with the bonding energy and configuration of different capping molecules. Finally the conductive ink was prepared with well dispersed Ag-DDA nanoparticles and the ink-jet printed patterns on PI films show a sheet resistance of 166 mΩ/□ after heat-treating at 140 °C for 60 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号