首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structurally different ZnSe ceramics prepared by various techniques were subjected to fallingweight impact fracture. Mechanoluminescence (ML) pulses generated during the motion and multiplication of dislocations were detected, as well as acoustic emission (AE) pulses produced predominantly during the growth of macroscopic (on the specimen scale) cracks. The luminescence began immediately at the moment of contact of a striker with the surface of the specimen, whereas the emission of sound occurred within 50–100 μs after the impact. The emission maxima in the ML and AE time series coincided with each other. The signal series were used to construct energy distributions upon the emission of light and the generation of sound. It was established that the ML amplitude (the number of emitted photons) is proportional to the energy released due to dislocation rearrangements, and the intensity (the square of the amplitude) of AE pulses is proportional to the energy released due to discontinuities of the material. It was found that the ML energy distribution follows a power law, which indicates the self-organization of an ensemble of dislocations during rapid plastic deformation. The AE energy distribution, on the contrary, was found to be random, i.e., typical of the growth of non-interacting cracks. It was shown that the efficiency of the interaction of dislocations depends, to a certain extent, on the technological prehistory of ZnSe ceramics.  相似文献   

2.
The methods of optical, electron, and atomic force microscopy (AFM) are applied to the study of the real structure of optical lithium fluoride ceramic obtained by hot deformation of single crystals. A comparative analysis is carried out of the scattering mechanisms of weakly nonequilibrium thermal phonons at liquid helium temperatures in LiF single crystals and ceramics. It is demonstrated that the phonon scattering in the original single crystals is determined by the forced vibrations of dislocations in the stress field of an elastic plane wave (a phonon), i.e., by the flutter mechanism. As the degree of deformation of the original material increases, the ceramics exhibit a change in the plastic deformation mechanisms, which leads to a decrease in the average size of grains and to an ordered structure. In this case, the dominant scattering is that by intergrain boundaries. The thickness and the acoustic impedance of these boundaries are evaluated.  相似文献   

3.
A theoretical model is proposed for lattice dislocation nucleation in deformed nanocrystalline ceramics with amorphous intergrain boundaries. According to the model, a lattice dislocation dipole nucleates at an amorphous intergrain boundary through a local plastic shear along the boundary cross section. The energy parameters of this nucleation process are calculated. It is demonstrated that the dislocation nucleation at amorphous intergrain boundaries is energetically favorable and can occur as an athermic process (without energy barrier) in the nanocrystalline phase of cubic silicon carbide 3C-SiC and in the TiN/a-Si3N4 nanocomposite over wide ranges of structural parameters and mechanical loads.  相似文献   

4.
Mechanoluminescence (ML) emission from coloured alkali halide crystals takes place during their elastic and plastic deformation. The ML emission during the elastic deformation occurs due to the mechanical interaction between dislocation segments and F-centres, and the ML emission during the plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. In the elastic region, the ML intensity increases linearly with the strain or deformation time, and in this case, the saturation region could not be observed because of the beginning of the plastic deformation before the start of the saturation in the ML intensity. In the plastic region, initially the ML intensity also increases linearly with the strain or deformation time, and later on, it attains a saturation value for large deformation. When the deformation is stopped, initially the ML intensity decreases at a fast rate; later on, it decreases at a slow rate. The decay time for the fast decrease of the ML intensity gives the relaxation time of dislocation segments or pinning time of the dislocations, and the decay time of the slow decrease of the ML intensity gives the diffusion time of holes in the crystals. The saturation value of the ML intensity increases linearly with the strain rate and also with the density of F-centres in the crystals. Initially, the saturation value of the ML intensity increases with increasing temperature, and for higher temperatures the ML intensity decreases with increasing temperature. Therefore, the ML intensity is optimum for a particular temperature of the crystals. From the ML measurements, the relaxation time of dislocation segments, pinning time of dislocations, diffusion time of holes and the energy gap between the bottom of the acceptor dislocation band and interacting F-centre level can be determined. Expressions derived for the ML induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates indicates that the ML intensity depends on the strain, strain rate, density of colour centres, size of crystals, temperature, luminescence efficiency, etc. A good agreement is found between the theoretical and experimental results.  相似文献   

5.
ZnO压敏陶瓷中缺陷的介电谱研究   总被引:3,自引:0,他引:3       下载免费PDF全文
从理论上证明了介电松弛过程在介电谱上等效于电子松弛过程,认为室温下105Hz处特征损耗峰起源于耗尽层处本征缺陷所形成的电子陷阱.在-130—20℃范围内测量了三种配方ZnO陶瓷的介电频谱,发现ZnO压敏陶瓷室温下105Hz处的特征损耗峰在低温下分裂为两个特征峰,认为它们起源于耗尽层中的本征缺陷(锌填隙或/和氧空位)的电子松弛过程.发现ZnO-Bi2O3二元系陶瓷特征峰仅仅由锌填隙引起,而ZnO-Bi2关键词: ZnO压敏陶瓷 本征缺陷 介电谱 热处理  相似文献   

6.
Plastic deformation of NaCl crystals colored by irradiation with gamma rays was found to lead to the occurrence of a band in the spectrum of IR photoconductivity stimulated by F-center-exciting light. This band corresponds to photon energies lying in the range from 0.65 to 1.11 eV and higher and has two distinct peaks, at 0.74 and 0.88 eV. The position of the former peak correlates well with the spectrum of IR quenching of the photoplastic effect, which suggests that this peak is associated with a dislocation electronic level.  相似文献   

7.
The present paper reports the luminescence induced by plastic deformation of coloured alkali halide crystals using pressure steps. When pressure is applied onto a γ-irradiated alkali halide crystal, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value and later on it decreases with time. The ML of diminished intensity also appears during the release of applied pressure. The intensity Im corresponding to the peak of ML intensity versus time curve and the total ML intensity IT increase with increase in value of the applied pressure. The time tm corresponding to the ML peak slightly decreases with the applied pressure. After tm, initially the ML intensity decreases at a fast rate and later on it decreases at a slow rate. The decay time of the fast decrease in the ML intensity is equal to the pinning time of dislocations and the decay time for the slow decrease of ML intensity is equal to the diffusion time of holes towards the F-centres. The ML intensity increases with the density of F-centres and it is optimum for a particular temperature of the crystals. The ML spectra of coloured alkali halide crystals are similar to the thermoluminescence and afterglow spectra. The peak ML intensity and the total ML intensity increase drastically with the applied pressure following power law, whereby the pressure dependence of the ML intensity is related to the work-hardening exponent of the crystals. The ML also appears during the release of the applied pressure because of the movement of dislocation segments and movements of dislocation lines blocked under pressed condition. On the basis of the model based on the mechanical interaction between dislocation and F-centres, expressions are derived for the ML intensity, which are able to explain different characteristics of the ML. From the measurements of the plastico ML induced by the application of loads on γ-irradiated alkali halide crystals, the pinning time of dislocations, diffusion time of holes towards F-centres, the energy gap Ea between the bottom of acceptor dislocation band and the energy level of interacting F-centres, and work-hardening exponent of the crystals can be determined. As in the elastic region the strain increases linearly with stress, the ML intensity also increases linearly with stress, however, as in the plastic region, the strain increases drastically with stress and follows power law, the ML intensity also increases drastically with stress and follows power law. Thus, the ML is intimately related to the plastic flow of alkali halide crystals.  相似文献   

8.
Sagi Sheinkman 《哲学杂志》2016,96(26):2779-2799
The prevention of strength degradation of components is one of the great challenges in solid mechanics. In particular, at high temperatures material may deform even at low stresses, a deformation mode known as deformation creep. One of the microstructural mechanisms that governs deformation creep is dislocation motion due to the absorption or emission of vacancies, which results in motion perpendicular to the glide plane, called dislocation climb. However, the importance of the dislocation network for the deformation creep remains far from being understood. In this study, a climb model that accounts for the dislocation network is developed, by solving the diffusion equation for vacancies in a region with a general dislocation distribution. The definition of the sink strength is extended, to account for the contributions of neighbouring dislocations to the climb rate. The model is then applied to dislocation dipoles and dislocation pile-ups, which are dense dislocation structures and it is found that the sink strength of dislocations in a pile-up is reduced since the vacancy field is distributed between the dislocations. Finally, the importance of the results for modelling deformation creep is discussed.  相似文献   

9.
The alkaline-earth fluorohalide crystals MFX, where M=Ca, Sr, Ba, Pb and X=Cl, Br, I, form an important class of materials crystallizing in the PbFCl-type tetragonal structure which is also called the matlockite structure. These compounds have long been of interest because of the various defect species which can be detected by spin resonance and associated techniques. The crystals were prepared by slow cooling of the melt of a stoichiometric mixture of BaF 2 and the corresponding chloride or bromide under 0.2 bar of ultrapure argon (5N5), often slightly fluorinated. We have studied the mechanoluminescence (ML) of BaFBr:Sm 2+ and BaFCl:Sm 2+ crystals. It is seen that after the impact of a moving piston, initially the ML intensity increases with time, attains a maximum value and then it decreases with time up to a particular minimum value, and then it increases again, attaining a peak value and finally disappears. The first peak lies in the deformation region and the second peak lies in the post-deformation region. The ML intensity of the BaFCl:Sm 2+ crystal is much higher than the ML intensity of the BaFBr:Sm 2+ crystal. For different impact velocities, the ML intensity increases with velocity; and the total ML intensity attains a saturation value for higher impact velocities. The total ML intensity increases with the increase in the applied load. It is suggested that the moving dislocation produced during deformation of crystals captures holes from hole-trapped centers (like H centers), and the subsequent radiative recombination of the dislocation holes with electron gives rise to ML. Thermoluminescence (TL) of BaFBr:Sm 2+ and BaFCl:Sm 2+ crystals was studied after exposure to ultraviolet rays with the help of a TLD reader. The peak of TL for the BaFBr:Sm 2+ crystal is found at ~247°C and for BaFCl:Sm 2+ crystals at 283°C. The TL intensity initially increases with increase in the UV radiation and then it attains saturation for higher values of UV exposure. The absorption spectrum was recorded with the help of a UV–visible spectrophotometer (Shimadzu). The band found at 275 nm was attributed to H centers.  相似文献   

10.
The structure, properties, and formation mechanisms of Y3Al5O12, Y2O3, and Lu2O3 laser ceramics are investigated. Their microhardness and fracture toughness are determined. It is shown that the change in mechanical properties is related both to the grain size and grain boundary structure. Processes of plastic deformation of crystals by mechanical twinning are considered. Mechanisms of formation and motion of twins in crystals with FCC structure are determined. It is shown that the realization of similar mechanisms in crystals with HCP structure results in the phase transformations. Models of the formation and motion of twin boundaries are proposed which result in pore healing when preparing monolithic samples of highly transparent ceramics.  相似文献   

11.
Structural mechanisms and features of brittle and quasi-brittle fracture of nanocrystalline materials are theoretically analyzed. The role of size effects and internal stresses caused by a nonequilibrium structure during brittle trans-and intercrystallite fracture is studied. The dependence of the nanocrystalline material durability on the working stress and grain size is calculated. The conditions for certain mechanisms of plastic deformation to be operative in nanocrystalline materials are analyzed. The influence of the grain-boundary and dislocation mechanisms of plastic deformation on the conditions of nanocrack formation is studied. The dependence of the fracture toughness of nanomaterials on structure parameters is calculated.  相似文献   

12.
ABSTRACT

The ability to experimentally synthesise ceramic materials to incorporate nanotwinned microstructures can drastically affect the underlying deformation mechanisms and mechanics through the complex interaction between stress state, crystallographic orientation, and twin orientation. In this study, molecular dynamics simulations are used to examine the transition in deformation mechanisms and mechanical responses of nanotwinned zinc-blende SiC ceramics subjected to different stress states (uniaxial compressive, uniaxial tensile, and shear deformation) by employing various twin spacings and loading/crystallographic orientations in nanotwinned structures, as compared to their single crystal counterparts. The simulation results show that different combinations of stress states and crystal/twin orientation, and twin spacing trigger different deformation mechanisms: (i) shear localised deformation and shear-induced fracture, preceded by point defect formation and dislocation slip, in the vicinity of the twin lamellae, shear band formation, and dislocation (emission) avalanche; (ii) cleavage and fracture without dislocation plasticity, weakening the nanotwinned ceramics compared to their twin-free counterpart; (iii) severe localised deformation, generating a unique zigzag microstructure between twins without any structural phase transformations or amorphisation, and (iv) atomic disordering localised in the vicinity of coherent twin boundaries, triggering dislocation nucleation and low shearability compared to twin-free systems.  相似文献   

13.
Improved understanding of the plastic deformation of metals during high-strain-rate shock loading is key to predicting their resulting material properties. This paper presents the results of molecular-dynamics simulations which address two fundamental questions related to materials deformation: the stability of supersonic dislocations and the mechanism of nano-twin formation. The results show that aluminium plastically deforms by the subsonic motion of edge dislocations when subjected to applied shear stresses of up to 600?MPa. Although higher applied stresses initially drive transonic dislocations, this motion is transient, and the dislocations decelerate to a sustained subsonic saturation velocity. Slowing of the transonic dislocation is controlled by the interaction with excited Rayleigh waves. 800?MPa marks a critical shear stress at which dislocation glide gives way to nano-twin formation via the homogeneous nucleation of Shockley partial dislocation dipoles. At still higher applied stresses, additional dislocation dipole nucleation produces a mid-stacking fault transformation of the twinned material.  相似文献   

14.
A theoretical model is proposed for the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics under deformation at low and high temperatures. The nucleation of a dislocation loop in a crystalline grain is considered an ideal nanoscopic shear whose magnitude (the Burgers vector of the dislocation) increases gradually as the loop is nucleating. The characteristics of the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics based on cubic silicon carbide are calculated. It is shown that, in general, the homogeneous nucleation of a dislocation loop in nanocrystalline ceramics at high temperatures proceeds in two stages, namely, the athermal nucleation of a loop of a “noncrystallographic” partial dislocation and its thermally activated transformation into an ordinary partial lattice dislocation loop.  相似文献   

15.
王宏明  李沛思  郑瑞  李桂荣  袁雪婷 《物理学报》2015,64(8):87104-087104
铝基复合材料在加入颗粒相之后, 延伸率和塑性变形能力明显降低. 为改善其塑性变形能力, 通过对比强脉冲磁场冲击处理前后试样内部组织和残余应力的变化特征, 研究了磁致塑性效应对铝基复合材料塑性变形能力的影响机理. 结果表明: 当磁感应强度从2 T变化到4 T时, 铝基复合材料中位错密度显著增加, 4 T时的位错密度是未加磁场时的3.1倍; 3 T, 30个脉冲处理后的复合材料中残余应力值从未加磁场时的41 MPa减小为-1 MPa. 从原子尺度来看, 强磁场导致了磁致塑性效应, 从而引起了位错的运动, 并促进了位错的退钉扎和可移动位错数量的增加; 从材料内部整体结构变化来看, 磁场加速了材料内应力的释放速率, 降低了材料内部的残余应力, 从而改善了铝基复合材料的塑性变形能力.  相似文献   

16.
新型电光陶瓷调Q光纤激光器   总被引:2,自引:2,他引:0  
报道了基于OptoCeramic(R)电光陶瓷材料的新型调Q光纤激光器.采用976 nm半导体激光器作为抽运源,电光陶瓷调制器作为Q开关,峰值吸收系数1200 Db/m的高掺杂镱纤作为增益介质构成环形腔激光器.增益光纤的高掺杂浓度使得激光器的腔长得到缩短,输出光脉冲的宽度得到压缩.通过调节电光元件的电压,控制材料的折射率,调节谐振腔的损耗,实现Q开关作用.实验中通过改变腔长、抽运功率和重复频率,研究了脉冲的输出特性.获得最窄脉宽104 ns,重复频率3~40 kHz连续可调的调Q脉冲输出.  相似文献   

17.
Microstructure evolution is largely dominated by the internal stress fields that appear upon the appearance of inhomogeneous structures in a material. The hardening behaviour of metals physically originates from such a complex microstructure evolution. As deformation proceeds, statistically homogeneous distributions of dislocations in grains become unstable, which constitutes the driving force for the development of a pronounced dislocation substructure. The dislocation structure already appears at early stages of deformation due to the statistical trapping of dislocations. Cell walls contain dislocation dipoles and multipoles with high dislocation densities and enclose cell-interior regions with a considerably smaller dislocation density. The presence and evolution of such a dislocation arrangement in the material influence the mechanical response of the material and is commonly associated with the transient hardening after strain path changes. This contribution introduces a micromechanical continuum model of the dislocation cell structure based on the physics of the dislocation interactions. The approximation of the internal stress field in such a microstructure and the impact on the macroscopic mechanical response are the main items investigated here.  相似文献   

18.
The present paper reports the deformation-induced excitation of the luminescence centres in coloured alkali halide crystals. The peaks of the mechanoluminescence (ML) in γ-irradiated KCl, KBr, KI, NaCl and LiF crystals lie at 455, 463, 472, 450 and 485 nm, i.e. at 2.71, 2.67, 2.62, 2.75 and 2.56 eV, respectively. From the similarity between the ML spectra and the thermoluminescence (TL) and afterglow spectra, the ML of KCl, KBr, KI, NaCl and LiF crystals can be assigned to the deformation-induced excitation of the halide ions in V2-centres or any other hole centres. For the deformation-induced excitation of the halide ions in V2-centres, or in other centres, the following four models may be considered: (i) free electron generation model, (ii) electron–hole recombination model, (iii) dislocation exciton radiative decay model and (iv) dislocation exciton energy transfer model. The dislocation exciton energy transfer model is found to be suitable for the coloured alkali halide crystals. According to the dislocation exciton energy transfer model, during the deformation of solids the moving dislocations capture electrons from the F-centres and then they capture holes from the hole centres and consequently the formation of dislocation excitons takes place. Subsequently, the energy released during the decay of dislocation excitons excites the halide ions of the V2-centres or any other hole centres and the light emission occurs during the de-excitation of the excited halide ions, which is the characteristic of halide ions. The mechanism of ML in irradiated alkali halide crystals is different from that of the TL in which the electrons released form F-centres due to the thermal vibrations of lattices reach the conduction band and the energy released during the electron–hole recombination excites the halide ions in V2-centres or in any other hole centres. It is shown that the phenomenon of ML may give important information about the dislocation bands in coloured alkali halide crystals.  相似文献   

19.
B.P. Chandra   《Journal of luminescence》2008,128(7):1217-1224
During the elastic deformation of coloured alkali halide crystals, the bending segments of dislocations capture F-centre electrons lying in the expansion region of edge dislocations, to the states of dislocation band. After the separation from interacting F-centres, the captured electrons move together with the bending segments of dislocations and also drift along the axis of dislocations and subsequently the radiative electron–hole recombinations, owing to both the processes of captured-electron movement, give rise to the light emission. The generation rate of electrons in the dislocation band and the mechanoluminescence (ML) intensity initially increase with time, attain maximum value at a particular time, and then they decrease with time. The intensity Im corresponding to the peak of ML intensity versus time curve and the total intensity IT of ML increase with the applied pressure and also with the density of F-centres in the crystals. At low temperature, both Im and IT increase with temperature and at higher temperature they decrease with increasing temperature due to the thermal bleaching of F-centres and also due to the decrease in luminescence efficiency. Thus, both Im and IT are optimum for a particular temperature of the crystals. For longer time duration, the ML intensity decreases exponentially with time in which the decay time is equal to the lifetime of interacting F-centres. Expressions derived for the different characteristics of ML are able to explain the experimental results. It is shown that the time constant for rise of pressure, lifetime of the interacting F-centres or damping time of dislocation segments, and the activation energy can be determined from the ML measurements.  相似文献   

20.

Based on structure prediction method, the machine learning method is used instead of the density functional theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained a machine learning (ML) model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young’s modulus) and confirmed that the accuracy is better than that of AFLOW-ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young’s modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm-C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm-C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号