首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal magnetization near a fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 4000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with temperature T and is independent of applied magnetic field H. The results of J(t) and Ueff (T, H) are consistent with the Anderson–Kim flux–creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. Ueff at a fishtail peak field Hfp evolves quickly above a fishtail peak temperature Tfp, but slowly below that temperature. The result suggests that a decrease of flux viscosity coefficient above Tfp at Hfp is the origin of the fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages.  相似文献   

2.
AC susceptibility and DC magnetization measurements were performed for the RPdIn (R=Gd–Er) compounds both in the paramagnetic and in the ordered state. In opposite to GdPdIn, which is a ferromagnet (Tc=102 K), the other samples show a complex ferrimagnetic behavior with the additional transition at Tt<Tc. In the high-temperature phase (for Tt<T<Tc), a ferromagnetic interaction dominates, while in the low-temperature phase (for TTt) antiferromagnetic interactions with the magnetocrystalline anisotropy, especially strong for TbPdIn, come into play. The ordering temperatures are Tc=70, 34, 25 and 12.3 K for Tb-, Dy-, Ho- and ErPdIn respectively, while transition temperatures are Tt=6, 14 and 6 K for Tb-, Dy- and HoPdIn respectively. TbPdIn reveals an additional transition at 27 K connected with the intermediate ferrimagnetic phase. The critical fields for the magnetization process of the low-temperature phase are high (52 and 150 kOe for TbPdIn and 32 kOe for DyPdIn at T=4.2 K) yet these values decrease remarkably with increasing temperature. Results of the study are compared with magnetic and neutron diffraction data hitherto available. We state that irreversibility of the zero-field cooled–field cooled magnetization is not connected with the spin-glass phase claimed elsewhere.  相似文献   

3.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

4.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

5.
The critical current density Jc of some of the superconducting samples, calculated on the basis of the Bean’s model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim’s expression of the critical current density, Jc = k/(H0 + H), where Jc has positive curvature for all H, has been employed by connecting the positive constants k and H0 with the features of the hysteresis loop of a superconductor. A relation between the full penetration field Hp and the magnetic field Hmin, at which the magnetization is minimum, is obtained from the Kim’s theory. Taking the value of Jc at H = Hp according to the actual loop width, as in the Bean’s theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H0 are obtained in terms of the magnetization values M+(?Hmin), M?(Hmin), M+(Hp) and M?(Hp). The resulting method of estimating Jc from the hysteresis loop turns out to be as simple as the Bean’s method.  相似文献   

6.
We report the achievement of transport critical currents in Sr0.6K0.4Fe2As2 wires and tapes with a Tc = 34 K. The wires and tapes were fabricated through an in situ powder-in-tube process. Silver was used as a chemical addition as well as a sheath material. All the wire and tape samples have shown the ability to transport superconducting current. Critical current density Jc was enhanced upon silver addition, and at 4.2 K, a largest Jc of ~1200 A/cm2 (Ic = 9 A) was achieved for 20% silver added tapes, which is the highest in iron-based wires and tapes so far. The Jc is almost field independent between 1 T and 10 T, exhibiting a strong vortex pinning. Such a high transport critical current density is attributed to the weak reaction between the silver sheath and the superconducting core, as well as an improved connectivity between grains. We also identify a weak-link behavior from the apparent drop of Jc at low fields and a hysteretic phenomenon. Finally, we found that compared to Fe, Ta and Nb tubes, Ag was the best sheath material for the fabrication of high-performance 122 type pnictide wires and tapes.  相似文献   

7.
Magnetisation and magneto-resistance measurements have been carried out on superconducting Ba1?xKxFe2As2 samples with x = 0.40 and 0.50. From high field magnetization hysteresis measurements carried out in fields up to 16 T at 4.2 K and 20 K, the critical current density has been evaluated using the Bean critical state model. The JC determined from the high field data is >104 A/cm2 at 4.2 K and 5 T. The superconducting transitions were also measured resistively in increasing applied magnetic fields up to 12 T. From the variation of the TC onset with applied field, dHC2/dT at TC was obtained to be ?7.708 T/K and ?5.57 T/K in the samples with x = 0.40 and 0.50.  相似文献   

8.
9.
The effects of carbon nano-tubes (CNTs) on the crystal structure and superconducting properties of YBa2Cu3O7?δ (Y-123) compound were studied. Samples were synthesized using standard solid-state reaction technique by adding CNT up to 1 wt% and X-ray diffraction data confirm the single phase orthorhombic structure for all the samples. Current–voltage measurements in magnetic fields up to 9 T were used to study the pinning energy UJ and critical current density Jc as a function of magnetic field at fixed temperature. We find that while Tc does not change much with the CNT doping (91–92 K), both UJ and Jc increase systematically up to 0.7 wt% CNT doping in a broad magnetic field ranges between 0.1 and 9 T and Jc in the 0.7 wt% CNT doped sample is at least 10 times larger than that of the pure Y-123. The scanning electron microscope image shows that CNTs are forming an electrical-network between grains. These observations suggest that the CNT addition to the Y-123-compounds improve the electrical connection between superconducting grains to result in the Jc increase.  相似文献   

10.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

11.
We have studied the crystallization time dependence of the epitaxial YBCO films (t = 0.8 μm) grown on CeO2-buffered SrTiO3 substrates by fluorine-free metal–organic deposition using uv-lamp irradiation (uv-MOD). As increasing the time (T0) for heat treatment at the reaction temperature (760 °C) from 0 to 90 min, Jc and the YBCO 0 0 l XRD intensity are steeply increased and reach their maximum values at T0 = 10 min. This suggests that the heat treatment required for YBCO crystallization is significantly shortened in uv-MOD compared to conventional all-pyrolytic F-free MOD processes, which consume T0 = 90–150 min for crystallizing 0.4–0.5-μm-thick films. Scanning electron microscope measurement revealed a drastic change in surface morphology between T0 = 8 and 10 min, showing a good correspondence to the Jc and XRD data which suggest that the epitaxial growth reaches the film surface at the very early stage in the heat treatment.  相似文献   

12.
Crystalline defects on the nano-scale were successfully introduced into YBCO high-temperature superconductors (HTS) by ZrO2 nanometer particles addition in order to strongly pin the quantized vortices. Three batches of ZrO2 nano-particles with different particle size distributions were used. The corresponding mean nano-particle diameters are respectively, 287, 536 and 764 nm. Serving as artificial pinning centers (APC), non-superconducting nano-particles cause a remarkable enhancement of critical current density (Jc) at T = 77 K. This improvement has been shown to depend on the size of APC. The pinning strength of nano-particles inclusions has been found to be greater with wide size dispersed nano-particles. Our results indicate that pinning properties and vortex dynamics depend on the size of APCs. The introduction of APCs with controlled size is indispensable to achieve a high Jc.  相似文献   

13.
A series of UCoGe and U3Co4Ge7 polycrystalline samples has been prepared by arc melting and studied with respect to the phase composition and crystal structure, magnetization, a.c. susceptibility, electrical-resistivity and specific-heat behavior (down to 350 mK). U3Co4Ge7 has been found to exhibit a spontaneous magnetization below TC=21 K. Clear anomalies at TC typical for a ferromagnetic transition have been observed in a.c. susceptibility, electrical-resistivity and specific-heat data. No additional anomaly, which would indicate the second magnetic phase transition below TC reported in the literature, has been indicated. In all our UCoGe samples a transition to superconductivity has been revealed. On the other hand, no clear evidence of any transition to ferromagnetism with zero-field cooling down to 1.8 K has been obtained. The zero-field state is most probably governed by strong ferromagnetic spin fluctuations and seems to transform to a ferromagnetic state only when applying a magnetic field ≥10 mT. Simultaneously, an increase of the superconducting transition temperature is increasing with a magnetic field up to 10 mT and starts to decrease when increasing the field above this value. Measurements on bulk samples, which are by rule textured, indicate strong magnetocrystalline anisotropy in both investigated compounds.  相似文献   

14.
Magnetic measurements were made using pure YBCO and Zn doped YBa2(Cu1?xZnx)3O7?σ. Single crystals with Zn concentration of 0.5%, 1.5%, 3.0% and 4.3%. The magnetic hysteresis loops for these samples were measured in the temperature range 0.1 ? T/Tc ? 0.96 under magnetic fields of 5 T using SQUID. It was found that the critical current density Jc increased for low Zn content samples up to 3% Zn concentration compared to pure YBCO sample and decreased for the higher Zn content samples. These values varied consistently when compared at magnetic fields of 1 T and 3 T. Moreover Zn doped samples showed significant values of Jc in the temperature range of 0.7–0.9Tc, close to critical temperature compared to pure YBCO sample. The irreversibility field Hirr was also enhanced in this temperature range showing consistent decrease with increase of Zn concentration. The peak field Hp above Hc1 and irreversibility field Hirr, both show power law dependence of the form H = m1(1 ? T/Tc)m2 in the temperature range of 0.75–0.96Tc. The values of parameter m2 increased from 1.44 to 1.95 for the samples up to 3% Zn content and decreased to 1.37 for higher Zn contents. The ratio Hirr/Hp was found to be 3–4 for the lower Zn content samples and was 7–8 for the sample with high Zn content indicating more disorder for higher Zn content samples. The region between peak field Hp and irreversibility field Hirr was broadened with the increase of Zn concentration. The strong effect of Zn substitution in modifying behavior of these samples even at elevated temperatures is possibly due to the changes in the anisotropy of our samples with the increase of Zn concentration and also due to the locally induced changes in magnetic moments by Zn substitution.  相似文献   

15.
Inelastic neutron scattering has been performed on powder sample of an iron-based superconductor BaFe2(As0.65P0.35)2 with superconducting transition temperature (Tc) = 30 K, whose superconducting (SC) order parameter is expected to have line node. In the normal state, constant-E scan of dynamical structure factor, S(Q, E), exhibits a peak structure centered at momentum transfer Q  1.20 Å?1, corresponding to antiferromagnetic wave vector. Below Tc, the redistribution of the magnetic spectral weight takes place, resulting in the formation of a peak at E  12 meV and a gap below 6 meV. The enhanced magnetic peak structure is ascribed to the spin resonance mode, evidencing sign change in the SC order parameter similar to other iron-based high-Tc superconductors. It suggests that fully-gapped s± symmetry dominates in this superconductor, which gives rise to high-Tc (=30 K) despite the nodal symmetry.  相似文献   

16.
17.
Here, we report the synthesis and characterization of sulphur-substituted iron telluride i.e. FeTe1?xSx; (x = 0–30 %) system and study the impact of low temperature oxygen (O2) annealing as well. Rietveld analysis of room temperature X-ray diffraction (XRD) patterns shows that all the compounds are crystallized in a tetragonal structure (space group P4/nmm) and no secondary phases are observed. Lattice constants are decreased with increasing S concentration. The parent compound of the system i.e. FeTe does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 78 K, which corresponds to a structural phase transition. Heat capacity Cp(T) measurement also confirms the structural phase transition of FeTe compound. Superconductivity appears by S substitution; the onset of superconducting transition temperature is about 8 K for FeTe0.75S0.25 sample. Thermoelectric power measurements S(T) also shows the superconducting transition at around 7 K for FeTe0.75S0.25 sample. The upper critical fields Hc2(10%), Hc2(50%) and Hc2(90%) are estimated to be 400, 650 and 900 kOe respectively at 0 K by applying Ginzburg Landau (GL) equation. Interestingly, superconducting volume fraction is increased with low temperature (200 °C) O2 annealing at normal pressure. Detailed investigations related to structural (XRD), transport [S(T), R(T)H], magnetization (AC and DC susceptibility) and thermal [Cp(T)] measurements for FeTe1?xS:O2 system are presented and discussed.  相似文献   

18.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

19.
The temperature–dependent electrical resistivity ρ(T) in metallic and semiconducting phase of ZnO nanostructures is theoretically analysed. ρ(T) shows semiconducting phase in low temperature regime (140 K<T<180 K), shows an absolute minimum near 180 K and increases linearly with T at high temperatures (200 K<T<300 K). The resistivity in metallic phase is estimated within the framework of electron–phonon and electron–electron scattering mechanism. The contributions to the resistivity by inherent acoustic phonons (ρac) as well as high frequency optical phonons (ρop) were estimated using Bloch–Gruneisen (BG) model of resistivity. The electron–electron contributions ρe?e=BT2 in addition with electron–phonon scattering is also estimated for complete understanding of resistivity in metallic phase. Estimated contribution to resistivity by considering both phonons, i.e., ωac and ωop and the zero limited resistivity are added with electron–electron interaction ρe–e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model. The SPC model consistently retraces the low temperature resistivity behaviour (140 K<T<180 K). Finally the theoretically calculated resistivity is compared with experimental data which appears favourable with the present analysis in wide temperature range.  相似文献   

20.
We have developed a numerical technique to estimate the current carrying capability of HTS Roebel cable composed from coated conductor strands. The influence of self-field on the critical current density is studied computationally for a Roebel cable using a realistic field and angle dependence behaviour of critical current. The computations are carried out for N/2 (number of strands/strand width in mm), and N/5 Roebel cable for N = 2–15. The local current distribution in each strand satisfies the self-consistent criteria J = Jc(B(J)) except for a small region where the current density is set to zero to maintain the condition of equal currents in all strands. The variation of critical current with vertical and horizontal separation between the strands is also investigated. Results are compared with the measured values of critical current for some of our cables. The comparison shows an error of up to 10% which we attribute mostly to the model not accounting for the spread in Ic values of the constituent strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号