首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
二甲胺基尾式卟啉铁的轴向配位状态   总被引:3,自引:0,他引:3  
利用UV、MCD、Raman、EPR、Mssbauer、循环伏安等手段,研究了新型尾式卟啉铁-氯化中位一[邻-(4-二甲胺基丁酰胺基)苯基]三苯基卟啉合铁配合物不同价态下的轴向配位状态和它与含N碱及小分子CO、NO的轴向加合性质。结果表明:尾式卟啉铁(Ⅲ)呈现五配位高自旋(S=5/2)状态:尾端叔胺N不能与中心离子铁(Ⅲ)配位,而可以与铁(Ⅱ)生成五配位低自旋配合物。  相似文献   

2.
尾式卟啉铁一氧化氮配合物的配位性质的研究   总被引:2,自引:0,他引:2  
合成了一种第五配位基为叔胺的尾式卟啉铁(meso-[邻-(4-二乙胺基丁酰胺基)本基]三苯基卟啉合铁(Ⅱ),meso-MDBPTPPFe(Ⅱ))同NO的配合物mesoMDBPTPPFe(Ⅱ)NO。用光谱方法研究了配合物的结构;用分子轨道理论解释了配合物中心离子铁是五配位的原因。  相似文献   

3.
用分光光度法研究了咪唑或吡啶类配体与5-[邻-(4-(1-咪唑基)丁氧基)苯基]-10,15,20-三苯基卟啉合铁(III)氯化物[[Fe^I^I^I(ImTPP)]Cl]和5-[对-(4-(3-吡啶氧基)丁氧基)苯基]10,15,20-三苯基卟啉合铁(III)氯化物[[Fe^I^I^I(PyTPP)]Cl]两种尾式铁(III)卟啉的轴向加合作用, 测定了平衡常数、热力学参数及含氮配体的加合分子数。结果表明, [Fe^I^I^I(PyTPP)Cl与[Fe^I^I^I(TPP)]Cl相类似, 均与咪唑、吡啶类配体生成1:2低自旋六配位加合物。含氮配体与[Fe^I^I^I(ImTPP)]Cl的轴向加合反应平衡常数比与{Fe^I^I^I(TPP)]Cl相应的平衡常数大10-10^3倍, 这是因为含氮配体与[Fe^I^I^I(ImTPP)]Cl的轴向配位诱导了尾端咪唑基与配合物中的Fe^I^I^I离子的轴向配位, 这种配位横式增强了含氮配体与Fe^I^I^I离子的键合; 尾端咪唑基与配合物中的Fe^I^I^I离子配位的模式得到了UV-vis、^1H NMR及EPR实验数据的进一步证实。  相似文献   

4.
用分光光度法研究了咪唑或吡啶类配体与5-[邻-(4-(1-咪唑基)丁氧基)苯基]-10,15,20-三苯基卟啉合铁(III)氯化物[[Fe^I^I^I(ImTPP)]Cl]和5-[对-(4-(3-吡啶氧基)丁氧基)苯基]10,15,20-三苯基卟啉合铁(III)氯化物[[Fe^I^I^I(PyTPP)]Cl]两种尾式铁(III)卟啉的轴向加合作用, 测定了平衡常数、热力学参数及含氮配体的加合分子数。结果表明, [Fe^I^I^I(PyTPP)Cl与[Fe^I^I^I(TPP)]Cl相类似, 均与咪唑、吡啶类配体生成1:2低自旋六配位加合物。含氮配体与[Fe^I^I^I(ImTPP)]Cl的轴向加合反应平衡常数比与{Fe^I^I^I(TPP)]Cl相应的平衡常数大10-10^3倍, 这是因为含氮配体与[Fe^I^I^I(ImTPP)]Cl的轴向配位诱导了尾端咪唑基与配合物中的Fe^I^I^I离子的轴向配位, 这种配位横式增强了含氮配体与Fe^I^I^I离子的键合; 尾端咪唑基与配合物中的Fe^I^I^I离子配位的模式得到了UV-vis、^1H NMR及EPR实验数据的进一步证实。  相似文献   

5.
用分光光度法研究了咪唑或吡啶类配体与5-[邻-(4-(1-咪唑基)丁氧基)苯基]-10,15,20-三苯基卟唑合铁(Ⅲ)氯化物[[Fe~Ⅲ(ImTPP)]Cl]和5-[对-(4-(3-吡啶氧基)丁氧基)苯基]-10,15,20-三苯基卟啉合铁(Ⅲ)氯化物[[Fe~Ⅲ(PyTPP)]Cl]两种尾式铁(Ⅲ)卟啉的轴向加合作用,测定了平衡常数、热力学参数及含氮配体的加合分子数.结果表明,[Fe~Ⅲ(PyTPP)Cl与[Fe~Ⅲ(TPP)]Cl相类似,均与咪唑、吡啶类配体生成1:2低自旋六配位加合物.含氮配体与[Fe~Ⅲ(ImTPP)]Cl的轴向加合反应平衡常数比与[Fe~Ⅲ(TPP)]Cl相应的平衡常数大10~10~3倍,这是因为含氮配体与[Fe~Ⅲ(ImTPP)]Cl的轴向配位诱导了尾端咪唑基与配合物中的Fe~Ⅲ离子的轴向配位,这种配位模式增强了含氮配体与Fe~Ⅲ离子的键合;尾端咪唑基与配合物中的Fe~Ⅲ离子配位的模式得到了UV—vis、~1H NMR及EPR实验数据的进一步证实.  相似文献   

6.
文献中研究了1,1-二氰乙烯基-2,2-二硫醇盐(简称i-mnt)的Cu(Ⅱ)和 Ni(Ⅱ)配合物.现合成出i-mnt的钒(Ⅳ)和铁(Ⅲ)配合物,根据钒(Ⅳ)配合物的ESR谱和铁(Ⅲ)配合物的Mossbauer谱及其他光谱探讨它们的键合和结构。  相似文献   

7.
文献中研究了1,1-二氰乙烯基-2,2-二硫醇盐(简称i-mnt)的Cu(Ⅱ)和 Ni(Ⅱ)配合物.现合成出i-mnt的钒(Ⅳ)和铁(Ⅲ)配合物,根据钒(Ⅳ)配合物的ESR谱和铁(Ⅲ)配合物的Mossbauer谱及其他光谱探讨它们的键合和结构。  相似文献   

8.
制备了四种苯并噻唑基尾式铁(Ⅲ)卟啉,用元素分析和1HNMR、FAB-MS、UV-Vis等谱对自由卟啉及其铁(Ⅲ)配合物进行了表征;通过铁(Ⅲ)卟啉ESR和MCD光谱的分析以及与咪唑加合反应稳定常数的测定,考察了铁(Ⅲ)卟啉的轴向配位状态;研究了PhIO存在下苯并噻唑基尾式铁(Ⅲ)卟啉对环己烷羟化反应的催化活性,结果表明,在一定条件下,尾端苯并噻唑基团与铁(Ⅲ)卟啉可发生分子间轴向配位,并对轴向加合常数以及环己烷羟化产生一定的影响。  相似文献   

9.
CO2电催化还原的研究 IV: 光透薄层电极(OTTLE)研究反应机理   总被引:2,自引:0,他引:2  
本文用薄层电极的光谱电化学技术, 确定了催化剂碘化四[4-(三甲铵基)苯基]卟啉合钴(Co TMAPI)当恒电位控制在0.6-0.3, -1.0V时分别得以一价, 二价, 三价中心离子的可见紫外光谱, 检测到在咪唑存在下, CO2与一价钴卟啉生成的配合物, 并用易于与一价钴卟啉配位的碘甲烷来进一步证实, 从而肯定了CO2的电催化还原是通过形成CO2配合物中间体的反应途径。  相似文献   

10.
本文用薄层电极的光谱电化学技术,确定了催化剂碘化四[4-(三甲铵基)苯基]卟啉合钴(CoTMAPI)当恒电位控制在0.6、-0.3、-1.0V时分别得到一价、二价、三价中心离子的可见紫外光谱;检测到了咪唑存在下,CO2与一价钴卟啉生成的配合物,并用易于与一价钴卟啉配位的碘甲烷来进一步证实,从而肯定了CO2的电催化还原是通过形成CO2配合物中间体的反应途径。  相似文献   

11.
[Cp((CO)2Fe(PPh2H)]PF6 reacts with NaBH4 to give the intermediates CpFe(CO)2H and PPh2H, which are then converted into Cp(CO)(H)Fe(PPh2H). [Cp(CO)2FeL]PF6 (L = P(OMe)3, P(OEt)3 and P(OiPr)3) reacts with NaBH4 to give the product Cp(CO)(H)FeL directly without Cp(CO)2FeH and L even being formed transiently. The proposed reaction mechanism is that H attacks th phosphorus atom to give a metallaphosphorane complex, followed by coupling between a Cp(CO)2Fe fragment and H on the hypervalent phosphorus.  相似文献   

12.
The use of iron-containing metal surfaces, Fe, Fe-Cr-alloy and stainless steel, for the synthesis of mixed metal Ru-Fe compounds has been studied. The studied process was reductive carbonylation of RuCl3 in the presence of a metal surface. Reactions were carried out in ethanol solutions under 10-50 bar carbon monoxide pressure at 125 degrees C using an autoclave. During the reaction the metal surface was oxidized, releasing iron into the solution and acting as a sacrificial source of iron. Under these conditions the corrosion of the metal surface was facile and produced a series of iron-containing species. In addition to the formation of most obvious iron(II) products, such as [Fe(H2O)6]2+ or [FeCl2(H2O)4] the use of the metal surface also provided a route to novel labile trinuclear [Ru2Cl2(mu-Cl)4(CO)6FeL2] (L = H2O, EtOH) complexes. The stability and reactivity of the [Ru2Cl2(mu-Cl)4(CO)6FeL2] complexes were further studied using computational DFT methods. Based on the computational results a reaction route has been suggested for the formation and decomposition of [Ru2Cl2(mu-Cl)4(CO)6FeL2].  相似文献   

13.
The syntheses of [FeL][BF(4)](2).H(2)O, [FeL][ClO(4)](2).H(2)O, [FeL][NO(3)](2).CH(3)NO(2) and [FeL][CF(3)SO(3)](2) (L = tris(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine) are described. The isostructural BF(4)(-) and ClO(4)(-) salts are high-spin between 5-300 K, while the other two compounds are high-spin at room temperature but undergo gradual high-->low spin transitions upon cooling. For [FeL][NO(3)](2) this transition is centred at 139 K and proceeds to near-completeness, while for [FeL][CF(3)SO(3)](2) it is centred at 144 K and only proceeds to 50% conversion. The CF(3)SO(3)(-) salt also undergoes spin-crossover centred at 200 K in (CD(3))(2)CO solution, and exhibits dynamic inversion of its helical ligand conformation. All these compounds except the triflate salt have been crystallographically characterised, and show capped trigonal antiprismatic [6 + 1] coordination geometries. The NO(3)(-) and CF(3)SO(3)(-) salts undergo quantitative conversion to trapped, high-spin excited states upon irradiation with a green laser at 10 K (the LIESST effect; LIESST = Light-Induced Excited Spin State Trapping). The thermal stabilities of their LIESST excited states (T(LIESST) = 80-82 K) resemble those found for iron(ii) complexes of bidentate N-heterocyclic ligands. Hence, the LIESST properties of [FeL](2+) are those of a complex of three rigid bidentate domains linked by a flexible spacer, rather than of a single encapsulating podand.  相似文献   

14.
The ligands (L(t-Bu(2)))(2-), (L(Me(2)))(2-), and (L(Cl(2)))(2-) have been employed for the synthesis of the dinuclear Fe(III) complexes [L(t-Bu(2))Fe(μ-O)FeL(t-Bu(2))], [L(Me(2))Fe(μ-O)FeL(Me(2))], and [L(Cl(2))Fe(μ-O)FeL(Cl(2))]. The strongly electron-donating groups (tert-amines and phenolates) were chosen to increase the electron density at the coordinated ferric ions and thus to facilitate the oxidation of the complexes, with the possibility of fine-tuning the electronic structures by variation of the remote substituents. Molecular structures established in the solid (by single-crystal X-ray diffraction) and in solution (by X-ray absorption spectroscopy) show that the Fe ions are five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation. Spectroscopic and magnetic characterization establishes the highly covalent nature of the Fe(III)-O(oxo) and Fe(III)-O(Ph) bonds. The variations in the donor capabilities of the phenolates (due to changes in the remote substituents) are compensated for by a flexible electron donation of the Fe(III)-O(oxo) bonding. Spectroelectrochemical characterization demonstrates that [L(t-Bu(2))Fe(μ-O)FeL(t-Bu(2))] can be oxidized reversibly at +0.27 and +0.44 V versus Fc(+)/Fc, whereas [L(Me(2))Fe(μ-O)FeL(Me(2))] and [L(Cl(2))Fe(μ-O)FeL(Cl(2))] exhibit irreversible oxidations at +0.29 and +0.87 V versus Fc(+)/Fc, respectively. UV-vis, electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS), and Mo?ssbauer spectroscopy show that the successive oxidations of [L(t-Bu(2))Fe(μ-O)FeL(t-Bu(2))] are ligand-centered leading to the monophenoxyl radical complex [(?)L(t-Bu(2))Fe(III)(μ-O)Fe(III)L(t-Bu(2))](+) (with the oxidation primarily localized on one-half of the molecule) and the diphenoxyl radical complex [(?)L(t-Bu(2))Fe(III)(μ-O)Fe(III?)L(t-Bu(2))](2+). Both products are unstable in solution and decay by cleavage of an Fe(III)-O(oxo) bond. The two-electron oxidized species is more stable because of two equally strong Fe(III)-O(oxo) bonds, whereas in the singly oxidized species the Fe(III)-O(oxo) bond of the non-oxidized half is weakened. The decay of the monocation results in the formation of [L(t-Bu(2))Fe(III)](+) and [L(t-Bu(2))Fe(IV)=O], while the decay of the dication yields [(?)L(t-Bu(2))Fe(III)](2+) and [L(t-Bu(2))Fe(IV)=O]. Follow-up reactions of the oxidized fragments with the counteranion of the oxidant, [SbCl(6)](-), leads to the formation of [Fe(III)Cl(4)](-).  相似文献   

15.
The molecular structure of aluminium and iron(III) complexes with 3-phenyl and 3-(4-pyridyl) (HL) substituted acetylacetonate ligands is appreciably distorted. For AlL3 and FeL3 this shows that the orientation of the side pyridyl-N donor atoms lone pairs is about 90 and 135 degrees which favours the assembly of heterobimetallic square patterns in Al(Fe)L3 complexes with metal ions. This was employed for the modular construction of semi-regular heterobimetallic networks, in which the pyridyldiketonate ligands bridge pairs of Fe(Al)/Cd(Co) metal ions and support the structure of 1D and 2D coordination polymers. The unprecedented 2D structure of [Cd[AlL3](CH3OH)[NO3]2].2CHCl3 and Cd[AlL3](CH3OH)Br2].2CHCl3 . 2CH3OH is based upon plane tiling by a set of heterobimetallic squares and octagons, while [Cd[FeL3]2(NO3)2].2H2O and [Co[AlL3]2Cl2].4CHCl3 . 2CH3OH are 1D polymers and exist as chains of heterobimetallic squares sharing opposite vertices.  相似文献   

16.
The 18 and 19 valence electron (VE) nitrosyl complexes [Fe(NO)('pyS4')]BF4 ([1]BF4) and [Fe(NO)('pyS4')] (2) have been synthesized from [Fe('pyS4')]x ('pyS4'(2-) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)) and either NOBF4 or NO gas. Complex [1]BF4 was also obtained from [Fe(CO)('pyS4')] and NOBF4. The cation [1]+ is reversibly reduced to give 2. Oxidation of 2 by [Cp2Fe]PF6 afforded [Fe(NO)('pyS4')]PF6 ([1]PF6). The molecular structures of [1]PF6 and 2 were determined by X-ray crystallography. They demonstrate that addition of one electron to [1]+ causes a significant elongation of the Fe-donor atom bonds and a bending of the FeNO angle. Density functional calculations show that the unpaired electron in 2 occupies an orbital, which is antibonding with respect to all Fe-ligand interactions. As expected from qualitative Molecular Orbital (MO) theory, it has a large contribution from a pi* type NO orbital. The nu(NO) frequency decreases from 1893 cm(-1) in [1]BF4 to 1648 cm(-1) in 2 (in KBr). The antibonding character of the unpaired electron explains the ready reaction of 2 with excess NO to give [Fe(NO)2('pyS4')] (3), the facile NO/CO exchange of 2 to afford [Fe(CO)('pyS4')], and the easy oxidation of 2 to [1]+.  相似文献   

17.
Reaction of [PPN][Fe(NO)2(SePh)2] (1) with dimeric [Ni(mu-SCH2CH2SCH2CH2S)]2 in the presence of additional NO2- produced the neutral heterobimetallic [(ON)Ni[(mu-SCH2CH2)2S]Fe(NO)2] complex (2). The X-ray crystal structures of 1 and 2 show distorted tetrahedral iron dinitrosyl groups, assigned according to the Feltham-Enemark notation as [Fe(NO)2]9 The Fe-NO bonds are off linearity by an average of approximately equals 10 degrees for compounds 1 and 2, while a more linear Ni-NO coordination with a Ni-NO distance of 1.644(2) A was found in 2. The v(NO) value of complex 2 is consistent with an assignment for [Ni(NO)]9 of Ni0(NO)+ as is known for analogous phosphine derivatives, P3Ni0(NO)+. EPR signals of g values = 2.02-2.03 confirmed the existence of the odd electron in the chalcogenated [Fe(NO)2]9 compounds. Two [Fe(NO)2]10 complexes coordinated by the nickel(II) dithiolate, (bismercaptoethanediazacyclooctane)nickel(II), (Ni-1), (Ni-1)Fe(CO)(NO)2 and (Ni-1)Fe(NO)2, were prepared for comparison to the Ni0(NO)+ derivative and other monomeric and homodimetallic derivatives of the Fe(NO)2 fragment. While the oxidation level of Fe(NO)2 is the primary determinant of v(NO) values, they are also highly sensitive to ancillary ligands and, thereby, the distal metal influence through the bridging thiolate donor.  相似文献   

18.
In-depth kinetic and mechanistic studies on the reversible binding of NO to water-soluble iron(III) porphyrins as a function of pH revealed unexpected reaction kinetics for monohydroxo-ligated (P)Fe(III)(OH) species formed by deprotonation of coordinated water in diaqua-ligated (P)Fe(III)(H(2)O)(2). The observed significant decrease in the rate of NO binding to (P)Fe(OH) as compared to that of (P)Fe(H(2)O)(2) does not conform with expectations based on previous mechanistic work on NO-heme interactions, which would point to a diffusion-limited reaction for the five-coordinate Fe(III) center in (P)Fe(OH). The decrease in rate and an associatively activated mode of NO binding observed at high pH is ascribed to an increase in the activation barrier related to spin state and structural changes accompanying NO coordination to the high-spin (P)Fe(III)(OH) complex. The existence of such a barrier has previously been observed in the reactions of five-coordinate iron(II) hemes with CO and is evidenced for the first time for the process involving coordination of NO to the iron heme complex. The observed reactivity pattern, relevant in the context of studies on NO interactions with synthetic and biologically important hemes (in particular, hemoproteins), is reported here for an example of a simple water-soluble iron(III) porphyrin [meso-tetrakis(sulfonatomesityl)porphinato]-iron(III), (TMPS)Fe(III).  相似文献   

19.
The mechanism of formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues at iron-sulfur protein sites has received little attention in the chemical literature. As a logical first step toward elucidating this mechanism and characterizing new iron-nitrosyl intermediates, we investigated the interaction of NO (g) and NO+ with iron-sulfur complexes chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(StBu)4]2- cleanly affords the mononitrosyl complex, [Fe(StBu)3(NO)]- (1), a previously unknown species evoked in this chemistry. Reaction of [Fe(StBu)4]2- with NO derivatives, such as NO+, yields the corresponding dinitrosyl S-bridged Roussin red ester [Fe2(mu-StBu)2(NO)4] (2). The nitrosyl complexes 1 and 2 can chemically convert to the DNIC, [Fe(StBu)2(NO)2]- (3). The results should aid in the spectroscopic identification and elucidation of reaction pathways for the nitrosylation of iron in biologically related sulfur-rich coordination environments.  相似文献   

20.
The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(?) and ΔV(?) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号