首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudo first‐order rate constants of the reaction of diethyl(ethyl cyanoacetato)aluminum [(C2H5)2Al(NCCHCOOC2H5)] with 17 fluorinated acrylates and methacrylates and five hydrocarbon analogs for references were investigated to examine the initiation reactivities of the anionic polymerization of fluorinated vinyl monomers to afford the reactivity order: CH2?C(CF3)COOC2H5 > CH2?C(CF3)COOCH(CH3)2 > CH2?CHCOOCH2C6F5 > CH2?C(CF3)COOC(CH3)3 > CH2?C(CF3)COOCH2C6F5 > CH2?C(CF3)COOCH(CF3)2 ≥ CH2?CHCOOCH3 > CH2?CHCOOCH2C6H5 ≥ CH2?C(CF3)COOCH2CF3 > CH2?C(CH3)COOCH2C6F5 > CH2?CHCOOCH2CF3 > CH2?CHCOOCH2C2F5 > CH2?CHCOOCH(CF3)2 > CH2?C(CH3)COOCH3 > CH2?C(CH3)COOCH2C6H5 ≥ CH2?C(CH3)COOCH2CH2C8F17 > CH2?C(CH3)COOCH(CH3)2 > CH2?C(CH3)COOCH2C2F5 ≥ CH2?C(CH3)COOCH2CF3. No rate constants for CH2?C(CH3)COOCH(CF3)2, CH2?CFCOOC(CH3)3, and CH2?CFCOOCH2C2F5 were obtained because of too fast polymerization. The incorporation of a trifluoromethyl group into the vinyl group enhanced the reactivity toward the delocalized carbanion. The reactivity of other fluorinated acrylates and methacrylates was concluded to approximately be controlled by the fluorine contents and the bulkiness of substituents of monomers. The reactivity was generally decreased by increasing fluorine contents of fluoroalkyl substituents in ester groups. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7011–7021, 2008  相似文献   

2.
Fluorinated β‐ketonaphthyliminate ligand CF3C(O)CHC[HN(naphthyl)]CH3 ( L1 ) and Pd(II) complexes with dichelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}2Pd ( C1 ), as well as with monochelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}Pd(CH3)(PPh3) ( C2 ), were synthesized and their solid‐state structures were confirmed using X‐ray crystallographic analysis. The Pd(II) complexes were employed as precursors to catalyze norbornene (NB) homo‐ and copolymerization with ester‐functionalized NB derivative using B(C6F5)3 as a co‐catalyst. High activity up to 2.3 × 105 gpolymer molPd?1 h?1 for the C1 /B(C6F5)3 system and 3.4 × 106 gpolymer molPd?1 h?1 for the C2 /B(C6F5)3 system was exhibited in NB homopolymerization. Moreover, the Pd(II) complexes exhibited a high level of tolerance towards the ester‐functionalized MB monomer. In comparison with the C1 /B(C6F5)3 system, the C2 /B(C6F5)3 system exhibited better catalytic property towards the copolymerization of NB with 5‐norbornene‐2‐carboxylic acid methyl ester (NB‐COOCH3), and soluble vinyl‐addition‐type copolymers were obtained with relatively high molecular weights (3.6 × 104–7.5 × 104 g mol?1) as well as narrow molecular weight distributions (1.49–2.15) depending on the variation of monomer feed ratios. The NB‐COOCH3 insertion ratio in all copolymers could be controlled in the range 2.8–21.0 mol% by tuning a content of 10–50 mol% NB‐COOCH3 in the monomer feed ratios. Copolymerization kinetics were expressed by the NB and NB‐COOCH3 monomer reactivity ratios: rNB‐COOCH3 = 0.18, rNB = 1.28 were determined for the C1 /B(C6F5)3 system and rNB‐COOCH3 = 0.19, rNB = 3.57 for the C2 /B(C6F5)3 system using the Kelen–Tüdõs method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A series of fluorinated β-diketones, RfC(O)CH2C(O)Rf (Rf=C6F13, Rf′=CF3; Rf=Rf′=C6F13, C7F15), have been prepared in reasonable yields by a two-step synthesis. On reaction with appropriate metal substrates, deprotonation and concurrent coordination of the perfluoroalkyl-derivatised β-diketonate ligands affords a range of fluorous metal complexes which have been characterised by elemental analysis, mass spectrometry, IR and NMR spectroscopies. The structures of [Cu(L-L)2(H2O)2] {L-L=CF3C(O)CHC(O)C6F13, C6F13C(O)CHC(O)C6F13} and [Cu(PPh3)2{C7F15C(O)CHC(O)C7F15}] have been determined by single-crystal X-ray diffraction.  相似文献   

4.
Two routes to RFIF6 compounds were investigated: (a) the substitution of F by RF in IF7 and (b) the fluorine addition to iodine in RFIF4 precursors. For route (a) the reagents C6F5SiMe3, C6F5SiF3, [NMe4][C6F5SiF4], C6F5BF2, and 1,4-C6F4(BF2)2 were tested. C6F5IF4 and CF3CH2IF4 were used in route (b) and treated with the fluoro-oxidizers IF7, [O2][SbF6]/KF, and K2[NiF6]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of C6F5SiX3 (X = Me, F), C6F5BF2, 1,4-C6F4(BF2)2 with IF7 gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas [NMe4][C6F5SiF4] and IF7 formed mixtures of C6FnIF4 and C6FnH compounds (n = 7 and 9). CF3CH2IF4 was not reactive towards the fluoro-oxidizer IF7, whereas C6F5IF4 formed C6FnIF4 compounds (n = 7 and 9). C6F5IF4 and CF3CH2IF4 were inert towards [O2][SbF6] in anhydrous HF. CF3CH2IF4 underwent C-H fluorination and C-I bond cleavage when treated with K2[NiF6]/KF in HF. The fluorine addition property of IF7 was independently demonstrated in case of perfluorohexenes. C4F9CFCF2 and IF7 underwent oxidative fluorine addition at −30 °C, and the isomers (CF3)2CFCFCFCF3 (cis and trans) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF7 and selected organic solvents was investigated. The polyfluoroalkanes CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB), and C4F9Br are inert towards iodine heptafluoride at 25 °C while CF3CH2Br was slowly converted to CF3CH2F. Especially PFP and PFB are new suitable organic solvents for IF7.  相似文献   

5.
The reactions of various fluoroaromatics, C6F6?xHx, and C6F5X (X = C6F6, Cl, Me, NO2, CF3, COCl, CH2Br, OMe, and NH2) with lead(II) benzenethiolate in DMF have been examined. Lead thiolate acted as an excellent source of benzenethiolate anions and displacement of fluorine, chlorine or the nitro group was observed. The new products have been characterized by elemental analysis, and NMR (H?1 and F?19), infrared and mass spectroscopy.  相似文献   

6.
We report herein the synthesis and full characterization of the donor‐free Lewis superacids Al(ORF)3 with ORF=OC(CF3)3 ( 1 ) and OC(C5F10)C6F5 ( 2 ), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2‐F2C6H4, and SO2, as well as the internal C? F activation pathway of 1 leading to Al2(F)(ORF)5 ( 4 ) and trimeric [FAl(ORF)2]3 ( 5 , ORF=OC(CF3)3). Insights have been gained from NMR studies, single‐crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl‐Al(ORF)3]? anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

7.
By the reaction of FSO2N?PCl3 with perfluorpropionic acid FSO2NHC(O)C2F5 is formed, which yields FSO2N?C(Cl)? C2F5 (I) with PCl5. The chlorine atom in (I) could be replaced by the substituents NH2 (II) and N(C2H5)2 (III). FSO2N?C(Cl)? CF3 reacts with AgOCN, AgSCN, unhydrous HF and 2,3-dimethylbutadiene. FSO2N(CH3)? C(O)F reacts with elemental fluorine under exchange of a proton against a fluorine atom to give FSO2N(CH2F)? C(O)F, which liberates at room temperature COF2 and trimerises to form 1,3,5-Tris-fluorosulfonyl-s-triazine (VIII). The amides FSO2N?C(CH3)NH2 and FSO2N?C(CF3)NH2 react with SF4 in the presence of NaF to yield the iminosulfur difluorides FSO2N?C(CH3)? NSF2 (IX) and FSO2N?C(CF3)? NSF2 (X)  相似文献   

8.
Some oxidative addition reactions of (CH3)5C5Rh(PF3)2 with various iodine compounds are described. Iodine reacts with (CH3)5C5Rh(PF3)2 in benzene at room temperature to give the deep red crystalline diiodide (CH3)5C5Rh(PF3)I2. The perfluoroalkyl iodides RfI (Rf = CF3, C2F5, n-C3F7, and n-C7F15) react with (CH3)5C5Rh(PF3)2 in benzene at room temperature to give the orange to deep red (CH3)5C5Rh(PF3)(Rf)I (Rf = CF3, C2F5, n-C3F7, and n-C7Fl5). The IR and proton and fluorine NMR spectra of these new (pentamethylcyclopentadienyl)rhodium-trifluorophosphine complexes are discussed.  相似文献   

9.
The following substances could be prepared by Grignard reactions or by conversions with trichlorosilane: C6F5CH2CHCH2, C6F5(CH2)3SiCl3, CF3(CF2)9CH2CHCH2, CF3(CF2)7(CH2)2SiCl3, CF3(CF2)11(CH2)3CHCH2 und CF3(CF2)11(CH2)5SiCl3.They were characterized by spectroscopical and microanalytical methods.  相似文献   

10.
Reaction of phosphorus trichloride with tert-butanol and fluoroalcohols gave bis(fluoroalkyl) phosphites (RFO)2P(O)H in 42-89% yield, where RF=HCF2CH2, H(CF2)2CH2, H(CF2)4CH2, CF3CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH, CF3(CH3)2C, (CF3)2CH3C, CF3CH2CH2, C4F9CH2CH2 and C6F13CH2CH2. Treatment of these with chlorine in dichloromethane gave the bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl in 49-96% yield. The chloridate (CF3CH2O)2P(O)Cl was isolated in much lower yield from the interaction of thionyl chloride with bis(trifluoroethyl) phosphite. Heating the latter in dichloromethane with potassium fluoride and a catalytic amount of trifluoroacetic acid gave the corresponding fluoridate (CF3CH2O)2P(O)F in 84% yield. Treatment of bis(trifluoroethyl) phosphite with bromine or iodine gave the bromidate (CF3CH2O)2P(O)Br and iodidate (CF3CH2O)2P(O)I in 51 and 46% yield, respectively. The iodidate is the first dialkyl phosphoroiodidate to have been isolated and characterised properly—its discovery lags behind the first isolation of a dialkyl phosphorochloridate by over 130 years. The fluoroalkyl phosphoryl compounds are generally more stable than known unfluorinated counterparts.  相似文献   

11.
Fluorinated polyacrylats with side group containing vinylidene fluoride (VDF) units (CF3(CF2)n (CH2CF2)m, n = 3, 5; m = 1, 2) were successfully synthesized. The water and oil repellency properties of these polymers are similar to those of fluorinated polyacrylate with side group containing long perfluorooctyl group (CF3(CF2)7). The thermal telomerization of CF3(CF2)5I and CF3(CF2)3I with vinylidene fluoride (VDF) provided CF3(CF2)5CH2CF2I (1b) and CF3(CF2)3CH2CF2CH2CF2I (1c), respectively. The addition of 1b with ethylene followed by hydrolysis gave CF3(CF2)5CH2CF2CH2CH2OH (2b). Treatment of 1c with ethyl vinyl ether in the presence of Na2S2O4 followed by reduction produced CF3(CF2)3CH2CF2CH2CF2CH2CH2OH (2c). Fluoroacrylates 3b-d were prepared by acrylation of the corresponding fluoroalcohols 2b-d. The semi-continuous process emulsion co-polymerization of 3a-d with octadecyl acrylate and 2-hydroxylethyl acrylate initiated by (NH4)2S2O8 in the presence of a mixture emulsifiers of polyoxyethylene(10)nonyl phenyl ether (TX-10) and sodium lauryl sulfate provided stable latexes 4a-d, respectively. The water and oil repellency properties of 4b (Rf: CF3(CF2)5CH2CF2) and 4c (Rf: CF3(CF2)3CH2CF2CH2CF2) containing vinylidene fluoride (VDF) units were similar to those of 4a (Rf: CF3(CF2)7) containing long perfluoroalkyl group and much better than those of polymer 4d (Rf: CF3(CF2)3) with short perfluoroalkyl chain. Thus, polyacrylates containing vinylidene fluoride units showed promising aspects as the alternatives to the currently used water and oil repellent agents with long perfluoroalkyl chains.  相似文献   

12.
The perfluoroethyl amines C2F5N(CF3)2, C2F5N(CF3)CHF2, and C2F5N(CHF2)2 have been isolated from the electrofluorination of N(CH3)3 as well as C2H5N(CH3)2. Evidence is presented that, in the former case, the C2F5 compounds are formed by ·CF3 attack on partly fluorinated trimethylamines NC3F9?nHn, n = 1 to 3. The compounds have been characterized by analytical, nmr and vibrational spectroscopic methods.  相似文献   

13.
The geometries and interaction energies of complexes of pyridine with C6F5X, C6H5X (X=I, Br, Cl, F and H) and RFI (RF=CF3, C2F5 and C3F7) have been studied by ab initio molecular orbital calculations. The CCSD(T) interaction energies (Eint) for the C6F5X–pyridine (X=I, Br, Cl, F and H) complexes at the basis set limit were estimated to be ?5.59, ?4.06, ?2.78, ?0.19 and ?4.37 kcal mol?1, respectively, whereas the Eint values for the C6H5X–pyridine (X=I, Br, Cl and H) complexes were estimated to be ?3.27, ?2.17, ?1.23 and ?1.78 kcal mol?1, respectively. Electrostatic interactions are the cause of the halogen dependence of the interaction energies and the enhancement of the attraction by the fluorine atoms in C6F5X. The values of Eint estimated for the RFI–pyridine (RF=CF3, C2F5 and C3F7) complexes (?5.14, ?5.38 and ?5.44 kcal mol?1, respectively) are close to that for the C6F5I–pyridine complex. Electrostatic interactions are the major source of the attraction in the strong halogen bond although induction and dispersion interactions also contribute to the attraction. Short‐range (charge‐transfer) interactions do not contribute significantly to the attraction. The magnitude of the directionality of the halogen bond correlates with the magnitude of the attraction. Electrostatic interactions are mainly responsible for the directionality of the halogen bond. The directionality of halogen bonds involving iodine and bromine is high, whereas that of chlorine is low and that of fluorine is negligible. The directionality of the halogen bonds in the C6F5I– and C2F5I–pyridine complexes is higher than that in the hydrogen bonds in the water dimer and water–formaldehyde complex. The calculations suggest that the C? I and C? Br halogen bonds play an important role in controlling the structures of molecular assemblies, that the C? Cl bonds play a less important role and that C? F bonds have a negligible impact.  相似文献   

14.
Angle‐resolved XPS data (elemental quantification and high‐energy‐resolution C 1s) are presented for ten polymers with side‐chains of the form ? OCO(CF2)yF, ? COO(CH2)2OCO(CF2)yF (y = 1, 2, 3) and ? COO(CH2)x(CF2)yF (x = 1, y = 1, 2, 3; x = 2, y = 8). Particular attention was paid to charge compensation and speed of data acquisition, with co‐addition from multiple fresh samples to give spectra with good energy resolution and good signal‐to‐noise ratio free from the effects of x‐ray‐induced degradation. Water contact angles for the polymers are also reported. The XPS data demonstrate preferential surface segregation of fluorine‐containing groups for all but the shortest side‐chain polymer, where the ? OCOCF3 side‐chain either does not surface segregate or is too short for surface segregation to be detectable by angle‐resolved XPS. In the other polymers studied the relative positions of functional groups in the side‐chains correlate with the angle‐resolved behaviour of the corresponding C 1s components. This shows that the surface side‐chains are oriented towards the polymer surface. For the ? COO(CH2)2OCO(CF2)yF (y = 1) side‐chain, the angle‐resolved C 1s data suggest reduced ordering and linearity compared with y = 2 and 3. For any particular series of polymers, e.g. ? COO(CH2)x(CF2)yF, the water contact angles increase with y, consistent with burying of the hydrophilic ester groups as y increases. For any particular value of y the sequence of water contact angles is ? COO(CH2)x(CF2)yF > ? OCO(CF2)yF ~ ? COO(CH2)2OCO(CF2)yF, suggesting greater ordering and density of fluorocarbon species at the surface of the ? COO(CH2)x(CF2)yF side‐chain polymers compared with the other polymers studied. For the ? COO(CH2)2(CF2)8F polymer a water contact angle of 124° is measured, which is greater than that of poly(tetrafluoroethene). The ? COO(CH2)2OCO(CF2)F polymer is unusual in that it shows a particularly low water contact angle (83° ), suggesting that the probe fluid is able to sense both ester groups, consistent with the reduced ordering of the side‐chain detected by angle‐resolved XPS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The reaction of alkynyldifluoroboranes RC≡CBF2 (R = (CH3)3C, CF3, (CF3)2CF) with organyliodine difluoride R′IF2 bearing electron‐withdrawing polyfluoroorganyl groups R′ = C6F5, (CF3)2CFCF=CF, C4F9, and CF3CH2 leads to the corresponding alkynyl(organyl)iodonium salts [(RC≡C)(R′)I][BF4]. This approach uses a widely applicable method as demonstrated for a representative series of polyfluorinated aryl‐, alkenyl‐, and alkyliodine difluorides. Generally, these syntheses proceed with good yields and deliver pure iodonium salts. The distinct electrophilic nature of their [(RC≡C)(R′)I]+ cations is deduced from multinuclear magnetic resonance data. Within the series of new iodonium salts [CF3C≡C(C4F9)I][BF4] is an intrinsic unstable one and decomposed forming CF3C≡CI and C4F10.  相似文献   

16.
Unsaturated perfluoroalkyl esters derived from undecylenic acid: CH2?CH? (CH2)8? COO? CH2? CH2? RF (with RF?C6F13, 2a and RF?C8F17, 2b ) and C8F17? (CH2)10? COO? CH2? CH?CH2, 2c were prepared with excellent yields. Their hydrosilylation by methylhydrodimethylsiloxane copolymers of various Si? H contents gives new fluorinated polysiloxanes which were examined by 1H- and 13C-NMR, GPC, differential scanning calorimetry, and optical polarizing microscopy. Polymers derived from compounds 2a and 2b exhibit mesomorphic structures. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

18.
Bis(fluorbenzoyloxy)methyl phosphane oxides CH3P(O)[OC(O)R]2 [R = C6H42F (1), C6H43F (2), C6H44F (3), C6H32,6F2 (4), C6H2,3,5,6F4 (5)] were prepared by treating silver salts of carboxylic acids AgOC(O)R with CH3P(O)C?2 (IR-, 1H-, 19?F-and 31P{1H}-NMR-data). The mixed anhydrides 1–5 show unusual thermal stability at room temperature. Stability against hydrolysis decreases with increasing number of fluorine-atoms. The reaction of R′P(O)C?2 [R′ = CH3, C6H5, (CH3)3C] with MIOC(O)RF [RF = CF3, C2F5, C6F5; MI = AgI, NaI T?I] was investigated.  相似文献   

19.
Two novel assembling systems 3 and 4, with the structures of C6F5CF2?H+N(Me)2CH2CH2(Me2)N+H?CF2C6F5 and C6F5CF2I?N(Me)2CH2CH2(Me)2N?ICF2C6F5, respectively, have been generated from the solution of heptafluorobenzyl iodide 1 and N,N,N,N-tetramethylethylenediamine 2 in dichloromethane. Their structures have been characterized by X-ray diffraction analysis, NMR and IR spectroscopy. Intermolecular N?I halogen bond and F?H hydrogen bond are revealed to be the driving forces for their formation.  相似文献   

20.
Hydrosilylation of fluorinated olefins with polyhydromethylsiloxane (PHMS) in the presence of a platinum catalyst was investigated to synthesize fluorosilicone having highly fluorinated alkyl side chains (Rf; CnF2n+1? ). The hydrosilylation of 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐heptadecafluoro‐1‐decene (C8F17CH?CH2) ( 1 ) with poly(dimethylsiloxane‐co‐hydromethylsiloxane) {(CH3)3SiO[? (H)CH3SiO? ]8[? (CH3)2 SiO? ]18Si(CH3)3} ( 4 ) converted the hydrogen bonded to silicons into the 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐heptadecafluorodecyl group or fluorine bonded to silicons in the ratio of about 52:48, and the formation of the byproduct C7F15CF?CHCH3 ( 8 ) was observed. The hydrosilylation of 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14‐heptadecafluoro‐4‐oxa‐1‐tetradecene (C8F17CH2CH2OCH2CH?CH2) ( 2 ) with 4 converted the hydrogen bonded to silicons into the 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14‐heptadecafluoro‐4‐oxa‐tetradocyl group bonded to silicons, but an excess amount of 2 was required to complete the reaction because the isomerization of 2 occurred in part to form C8F17CH2CH2OCH?CHCH3 ( 9 ). The hydrosilylation of 4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,11‐heptadecafluoro‐1‐undecene (C8F17CH2CH?CH2) ( 3 ) with 4 converted the hydrogen bonded to silicons into the 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11‐heptadecafluoroundecyl group bonded to silicons. This type of fluorinated olefin was successfully applied to the hydrosilylation with other PHMS's that involved a homopolymer of PHMS and a cyclic PHMS. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3120–3128, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号