首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s and t such that 2 ≤ st, 0 ≤ msnt, and m + n ≤ 2s + t − 1, we prove that if G has at least mn − (2(ms) + nt) edges then it contains a subdivision of the complete bipartite K (s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn − (2(ms) + nt + 1) edges for this topological Turan type problem.  相似文献   

2.
A vertex v of a graph G is called groupie if the average degree tv of all neighbors of v in G is not smaller than the average degree tG of G. Every graph contains a groupie vertex; the problem of whether or not every simple graph on ≧2 vertices has at least two groupie vertices turned out to be surprisingly difficult. We present various sufficient conditions for a simple graph to contain at least two groupie vertices. Further, we investigate the function f(n) = max minv (tv/tG), where the maximum ranges over all simple graphs on n vertices, and prove that f(n) = 1/42n + o(1). The corresponding result for multigraphs is in sharp contrast with the above. We also characterize trees in which the local average degree tv is constant.  相似文献   

3.
For S ? V(G) the S-center and S-centroid of G are defined as the collection of vertices uV(G) that minimize es(u) = max {d(u, v): vS} and ds(u) = ∑u∈S d(u, v), respectively. This generalizes the standard definition of center and centroid from the special case of S = V(G). For 1 ? k ?|V(G)| and uV(G) let rk(u) = max {∑sS d(u, s): S ? V(G), |S| = k}. The k-centrum of G, denoted C(G; k), is defined to be the subset of vertices u in G for which rk(u) is a minimum. This also generalizes the standard definitions of center and centroid since C(G; 1) is the center and C(G; |V(G)|) is the centroid. In this paper the structure of these sets for trees is examined. Generalizations of theorems of Jordan and Zelinka are included.  相似文献   

4.
Let Π = {S1, S2, . . . , Sk} be an ordered partition of the vertex set V (G) of a graph G. The partition representation of a vertex vV (G) with respect to Π is the k-tuple r(v|Π) = (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, S) is the distance between v and a set S. If for every pair of distinct vertices u, vV (G), we have r(u|Π) ≠ r(v|Π), then Π is a resolving partition and the minimum cardinality of a resolving partition of V (G) is called the partition dimension of G. We study the partition dimension of circulant graphs, which are Cayley graphs of cyclic groups. Grigorious et al. [On the partition dimension of circulant graphs] proved that pd(Cn(1, 2, . . . , t)) ≥ t + 1 for n ≥ 3. We disprove this statement by showing that if t ≥ 4 is even, then there exists an infinite set of values of n, such that . We also present exact values of the partition dimension of circulant graphs with 3 generators.  相似文献   

5.
For two nonisomorphic orientations D and D′ of a graph G, the orientation distance do(D,D′) between D and D′ is the minimum number of arcs of D whose directions must be reversed to produce an orientation isomorphic to D′. The orientation distance graph 𝒟o(G) of G has the set 𝒪(G) of pairwise nonisomorphic orientations of G as its vertex set and two vertices D and D′ of 𝒟0(G) are adjacent if and only if do(D,D′) = 1. For a nonempty subset S of 𝒪(G), the orientation distance graph 𝒟0(S) of S is the induced subgraph 〈S〉 of 𝒟o(G). A graph H is an orientation distance graph if there exists a graph G and a set S⊆ 𝒪(G) such that 𝒟o(S) is isomorphic to H. In this case, H is said to be an orientation distance graph with respect to G. This paper deals primarily with orientation distance graphs with respect to paths. For every integer n ≥ 4, it is shown that 𝒟o(Pn) is Hamiltonian if and only if n is even. Also, the orientation distance graph of a path of odd order is bipartite. Furthermore, every tree is an orientation distance graph with respect to some path, as is every cycle, and for n ≥ 3 the clique number of 𝒟o(Pn) is 2 if n is odd and is 3 otherwise. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 230–241, 2001  相似文献   

6.
In this paper we discuss a generalization of the familiar concept of an interval graph that arises naturally in scheduling and allocation problems. We define the interval number of a graph G to be the smallest positive integer t for which there exists a function f which assigns to each vertex u of G a subset f(u) of the real line so that f(u) is the union of t closed intervals of the real line, and distinct vertices u and v in G are adjacent if and only if f(u) and f(v)meet. We show that (1) the interval number of a tree is at most two, and (2) the complete bipartite graph Km, n has interval number ?(mn + 1)/(m + n)?.  相似文献   

7.
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceilFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceil$, improving a recent result by Fox, Loh and Sudakov. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 206–209, 2010  相似文献   

8.
For a nontrivial connected graph G of order n and a linear ordering s: v 1, v 2, …, v n of vertices of G, define . The traceable number t(G) of a graph G is t(G) = min{d(s)} and the upper traceable number t +(G) of G is t +(G) = max{d(s)}, where the minimum and maximum are taken over all linear orderings s of vertices of G. We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which t +(G) − t(G) = 1 are characterized and a formula for the upper traceable number of a tree is established. Research supported by Srinakharinwirot University, the Thailand Research Fund and the Commission on Higher Education, Thailand under the grant number MRG 5080075.  相似文献   

9.
The geodetic numbers of graphs and digraphs   总被引:1,自引:0,他引:1  
For every two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v)denote the set of all vertices lying on a u-v geodesic.For a vertex subset S,let I(S) denote the union of all I(u,v)for u,v∈S.The geodetic number g(G)of a graph G is the minimum cardinality of a set S with I(S)=V(G).For a digraph D,there is analogous terminology for the geodetic number g(D).The geodetic spectrum of a graph G,denoted by S(G),is the set of geodetic numbers of all orientations of graph G.The lower geodetic number is g~-(G)=minS(G)and the upper geodetic number is g~ (G)=maxS(G).The main purpose of this paper is to study the relations among g(G),g~-(G)and g~ (G)for connected graphs G.In addition,a sufficient and necessary condition for the equality of g(G)and g(G×K_2)is presented,which improves a result of Chartrand,Harary and Zhang.  相似文献   

10.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, we give some graft transformations that decrease and increase ?(G) and prove that the graph (obtained from the star Sn on n (n is not equal to 4, 5) vertices by adding an edge connecting two pendent vertices) has minimal distance spectral radius among unicyclic graphs on n vertices; while (obtained from a triangle K3 by attaching pendent path Pn−3 to one of its vertices) has maximal distance spectral radius among unicyclic graphs on n vertices.  相似文献   

11.
Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The pebbling number f(G) is the smallest number m such that for every distribution of m pebbles and every vertex v,a pebble can be moved to v. A graph G is said to have the 2-pebbling property if for any distribution with more than 2f(G) q pebbles, where q is the number of vertices with at least one pebble, it is possible,using pebbling moves, to get two pebbles to any vertex. Snevily conjectured that G(s,t) has the 2-pebbling property, where G(s, t) is a bipartite graph with partite sets of size s and t (s ≥ t). Similarly, the-pebbling number f (G) is the smallest number m such that for every distribution of m pebbles and every vertex v, pebbles can be moved to v. Herscovici et al. conjectured that f(G) ≤ 1.5n + 8-6 for the graph G with diameter 3, where n = |V (G)|. In this paper, we prove that if s ≥ 15 and G(s, t) has minimum degree at least (s+1)/ 2 , then f (G(s, t)) = s + t, G(s, t) has the 2-pebbling property and f (G(s, t)) ≤ s + t + 8(-1). In other words, we extend a result due to Czygrinow and Hurlbert, and show that the above Snevily conjecture and Herscovici et al. conjecture are true for G(s, t) with s ≥ 15 and minimum degree at least (s+1)/ 2 .  相似文献   

12.
Let S be a finite set of graphs and t a real number, 0 < t < 1. A (deterministic) graph G is (t, 5)-proportional if for every HS, the number of induced subgraphs of G isomorphic to H equals the expected number of induced copies of H in the random graph Gn, t where n = |V(G)|. Let Sk = {all graphs on k vertices}, in particular S3 = {K3, P2, K2Kt, D3}. The notion of proportional graphs stems from the study of random graphs (Barbour, Karoński, and Ruciński, J Combinat. Th. Ser. B, 47 , 125-145, 1989; Janson and Nowicki, Prob. Th. Rel. Fields, to appear, Janson, Random Struct. Alg., 1 , 15-37, 1990) where it is shown that (t, S3)-proportional graphs play a very special role; we thus call them simply t-proportional. However, only a few ½-proportional graphs on 8 vertices were known and it was an open problem whether there are any f-proportional graphs with t ≠ ½ at all. In this paper, we show that there are infinitely many ½-proportional graphs and that there are t-proportional graphs with t≠. Both results are proved constructively. [We are not able to provide the latter construction for all f∈ Q∩(0,1), but the set of ts for which our construction works is dense in (0,1).] To support a conviction that the existence of (t, S3)-proportional graphs was not quite obvious, we show that there are no (t, S4)-proportional graphs.  相似文献   

13.
The bandwidth problem for a graph G is to label its n vertices vi with distinct integers f(vi) so that the quantity max{| f(vi) ? f(vi)| : (vi vj) ∈ E(G)} is minimized. The corresponding problem for a real symmetric matrix M is to find a symmetric permutation M' of M so that the quantity max{| i ? j| : m'ij ≠ 0} is minimized. This survey describes all the results known to the authors as of approximately August 1981. These results include the effect on bandwidth of local operations such as refinement and contraction of graphs, bounds on bandwidth in terms of other graph invariants, the bandwidth of special classes of graphs, and approximate bandwidth algorithms for graphs and matrices. The survey concludes with a brief discussion of some problems related to bandwidth.  相似文献   

14.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

15.
Given two graphs G and H, let f(G,H) denote the minimum integer n such that in every coloring of the edges of Kn, there is either a copy of G with all edges having the same color or a copy of H with all edges having different colors. We show that f(G,H) is finite iff G is a star or H is acyclic. If S and T are trees with s and t edges, respectively, we show that 1+s(t?2)/2≤f(S,T)≤(s?1)(t2+3t). Using constructions from design theory, we establish the exact values, lying near (s?1)(t?1), for f(S,T) when S and T are certain paths or star‐like trees. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 1–16, 2003  相似文献   

16.
For two vertices u and v in a strong digraph D, the strong distance sd(u,v) between u and v is the minimum size (the number of arcs) of a strong sub-digraph of D containing u and v. For a vertex v of D, the strong eccentricity se(v) is the strong distance between v and a vertex farthest from v. The strong radius srad(D) (resp. strong diameter sdiam(D)) is the minimum (resp. maximum) strong eccentricity among the vertices of D. The lower (resp. upper) orientable strong radius srad(G) (resp. SRAD(G)) of a graph G is the minimum (resp. maximum) strong radius over all strong orientations of G. The lower (resp. upper) orientable strong diameter sdiam(G) (resp. SDIAM(G)) of a graph G is the minimum (resp. maximum) strong diameter over all strong orientations of G. In this paper, we determine the lower orientable strong radius and diameter of complete k-partite graphs, and give the upper orientable strong diameter and the bounds on the upper orientable strong radius of complete k-partite graphs. We also find an error about the lower orientable strong diameter of complete bipartite graph Km,n given in [Y.-L. Lai, F.-H. Chiang, C.-H. Lin, T.-C. Yu, Strong distance of complete bipartite graphs, The 19th Workshop on Combinatorial Mathematics and Computation Theory, 2002, pp. 12-16], and give a rigorous proof of a revised conclusion about sdiam(Km,n).  相似文献   

17.
A set S of vertices of a graph G is a total dominating set, if every vertex of V(G) is adjacent to some vertex in S. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. We prove that, if G is a graph of order n with minimum degree at least 3, then γt(G) ≤ 7n/13. © 2000 John Wiley & Sons, Inc. J Graph Theory 34:9–19, 2000  相似文献   

18.
Let C(v1, …,vn) be a system consisting of a circle C with chords v1, …,vn on it having different endpoints. Define a graph G having vertex set V(G) = {v1, …,vn} and for which vertices vi and vj are adjacent in G if the chords vi and vj intersect. Such a graph will be called a circle graph. The chords divide the interior of C into a number of regions. We give a method which associates to each such region an orientation of the edges of G. For a given C(v1, …,vn) the number m of different orientations corresponding to it satisfies q + 1 ≤ mn + q + 1, where q is the number of edges in G. An oriented graph obtained from a diagram C(v1, …,vn) as above is called an oriented circle graph (OCG). We show that transitive orientations of permutation graphs are OCGs, and give a characterization of tournaments which are OCGs. When the region is a peripheral one, the orientation of G is acyclic. In this case we define a special orientation of the complement of G, and use this to develop an improved algorithm for finding a maximum independent set in G.  相似文献   

19.
Let G=(V,E) be a connected graph. For a symmetric, integer-valued function δ on V×V, where K is an integer constant, N0 is the set of nonnegative integers, and Z is the set of integers, we define a C-mapping by F(u,v,m)=δ(u,v)+mK. A coloring c of G is an F-coloring if F(u,v,|c(u)−c(v)|)?0 for every two distinct vertices u and v of G. The maximum color assigned by c to a vertex of G is the value of c, and the F-chromatic number F(G) is the minimum value among all F-colorings of G. For an ordering of the vertices of G, a greedy F-coloring c of s is defined by (1) c(v1)=1 and (2) for each i with 1?i<n, c(vi+1) is the smallest positive integer p such that F(vj,vi+1,|c(vj)−p|)?0, for each j with 1?j?i. The greedy F-chromatic number gF(s) of s is the maximum color assigned by c to a vertex of G. The greedy F-chromatic number of G is gF(G)=min{gF(s)} over all orderings s of V. The Grundy F-chromatic number is GF(G)=max{gF(s)} over all orderings s of V. It is shown that gF(G)=F(G) for every graph G and every F-coloring defined on G. The parameters gF(G) and GF(G) are studied and compared for a special case of the C-mapping F on a connected graph G, where δ(u,v) is the distance between u and v and .  相似文献   

20.
Let G=(V(G),E(G)) be a simple graph. Given non-negative integers r,s, and t, an [r,s,t]-coloring of G is a mapping c from V(G)∪E(G) to the color set {0,1,…,k?1} such that |c(v i )?c(v j )|≥r for every two adjacent vertices v i ,v j , |c(e i )?c(e j )|≥s for every two adjacent edges e i ,e j , and |c(v i )?c(e j )|≥t for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number χ r,s,t (G) of G is defined to be the minimum k such that G admits an [r,s,t]-coloring. We determine χ r,s,t (K n,n ) in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号