首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The influence of tertiary aromatic amines on the course of BPO initiated cure reaction of unsaturated epoxy polyesters with different styrene content has been studied by non-isothermal differential scanning calorimetry. Unsaturated epoxy polyesters prepared from cyclohex-4-ene-1,2-dicarboxylic anhydride, maleic anhydride and suitable aliphatic glycol: ethylene glycol or 1,4-butanediol or 1,6-hexanediol were dissolved in vinyl monomer (styrene) resulting in a styrene content of 20–80% by weight. The styrene solutions of polyesters were subjected to the cure reaction with suitable curing agent: benzoyl peroxide (BPO) used in various concentration (0.5–3.0 wt%) or the mixture of BPO/stoichiometric ratio of chosen tertiary aromatic amines: (N,N-dimethylbenzylamine (BDMA) or 2,4,6-tri(dimethylaminomethyl) phenol (DMP-30). The curing characteristic such as: temperature of the cure initiation (T onset), peak maximum temperature (T max), final cure temperature (T end), heat generated during the cure reaction (ΔH) were evaluated. It has been found that the course of the cure reaction depended on the styrene content in prepared compositions and the initiating system used. The performed investigations confirmed that one of the applied tertiary aromatic amine: BDMA was an effective promoter for BPO decomposition process, causing a decrease in characteristic curing temperatures of unsaturated epoxy polyesters with styrene. The organic peroxide-amine interactions caused the promotion of BPO decomposition to benzoyloxy radicals at lower temperatures and thus accelerated the copolymerization process. However, DMP-30 was a very sluggish promoter for BPO decomposition, probably due to the presence of both hydroxyl group, their ortho-position to two of three amine groups and their branched structure. The redox reaction between BPO and DMP-30 probably resulted in non-radical products or radical formation which was incapable of initiating the polymerization reaction.  相似文献   

2.
The studies on the relationship between network structure/thermal properties of styrene copolymers based on adypic/sebacic acid modified unsaturated (epoxy) polyesters cured using different hardeners as well as the course of the cure reaction of polyesters with styrene have been presented. The adypic/sebacic acid modified unsaturated polyesters (UP) prepared from 4-cyclohexene-1,2-dicarboxylic anhydride (THPA), maleic anhydride (MA), adypic acid (AA) or sebacic acid (SA) and ethylene glycol (EG) and their epoxy derivatives: adypic/sebacic acid modified unsaturated epoxy polyesters (UEP) were subjected to the cure process with styrene using diacyl peroxide: benzoyl peroxide (BPO) or the mixture of BPO/suitable acid anhydride: 4-cyclohexene-1,2-dicarboxylic anhydride (THPA) or glutaric anhydride (GA). Thermal properties were evaluated by means of DSC, TG and DMA analyses. It was proved that studied properties were significantly depended on polyester's structure and the type of applied curing system. Generally, higher values of E'20°C, tgδmax, E”, νe, IDT, Tk for styrene copolymers based on UEP were obtained. It was connected with more cross-linked polymer network structure due to the possible copolymerization reaction of carbon-carbon double bonds of polyester with styrene and additional polyaddition of epoxy to anhydride groups or thermal curing of epoxy groups. The additional connections between polyester's chains led to obtain more stiff and thermal stable polymeric materials. Moreover, the increase of saturated aliphatic acid's chain length in polyester backbone caused the decrease of E'20°C, tgδmax, E”, νe, IDT, Tk values of styrene copolymers. It suggested that copolymers based on polyesters prepared from acid containing more methylene groups in their structure were characterized by more flexible polymer network due to the “laxity” effect of aliphatic chains.  相似文献   

3.
The influence of the structure of succinic or glutaric anhydride modified linear unsaturated (epoxy) polyesters on the course of the cure reaction with styrene initiated by benzoyl peroxide (BPO) or the mixture of benzoyl peroxide/tetrahydrophthalic anhydride (BPO/THPA) or benzoyl peroxide/maleic anhydride, as well as viscoelastic properties and thermal behavior of their styrene copolymers have been studied by DSC, DMA, and TGA analyses. Additionally, mechanical properties: flexural properties using three-point bending test and Brinell’s hardness for studied copolymers were evaluated. It was confirmed that the structure of used polyesters had a considerable influence on the course of the cure reaction with styrene, viscoelastic, thermal, and mechanical properties of prepared styrene copolymers. Generally, one or two asymmetrical peaks for the cure reaction of succinic or glutaric anhydride modified linear unsaturated epoxy polyesters with styrene were observed. They were connected with various cure reaction, e.g., copolymerization of carbon–carbon double bonds of polyester with styrene, thermal curing of epoxy groups, polyaddition reaction of epoxy to anhydride groups in dependence of used curing system. In addition, only one asymmetrical, exothermic peak attributed to the copolymerization process of succinic or glutaric anhydride modified linear unsaturated polyesters with styrene was visible. Moreover, the obtained styrene copolymers based on succinic or glutaric anhydride modified linear unsaturated epoxy polyesters were characterized by higher values of E20 °\textC E_{{20\,^{\circ}{\text{C}}}}^{\prime} , T g, E″, ν e, E mod, F max, hardness, IDT, FDT but lower ε − F max compared to those values observed for styrene copolymers prepared in the presence of succinic or glutaric anhydride modified linear unsaturated polyesters. This supported to the production of stiffer and more thermally stable polymeric structure of copolymers based on unsaturated epoxy polyesters. Moreover, the copolymers prepared in the use of glutaric anhydride modified linear unsaturated (epoxy) polyesters were described by lower values of E20 °\textC E_{{20\,^{\circ}{\text{C}}}}^{\prime} , T g, E″, ν e, E mod, F max, hardness, IDT, FDT but higher ε − F max than those based on succinic anhydride modified linear unsaturated (epoxy) polyesters. The presence of longer aliphatic chain length in polyester’s structure leads to produce more flexible network structure of styrene copolymers based on glutaric anhydride modified linear unsaturated (epoxy) polyesters than those based on succinic anhydride modified linear unsaturated (epoxy) polyesters.  相似文献   

4.
This article presents the studies on the thermal and viscoelastic properties of novel epoxy-dicyclopentadiene-terminated polyesters-styrene copolymers. The novel materials were prepared during a three step process including the addition reaction of maleic acid to norbonenyl double bond of dicyclopentadiene; polycondensation of acidic ester of dicyclopentadiene, cyclohex-4-ene-dicarboxylic anhydride, maleic anhydride, and suitable glycol: ethylene, diethylene, or triethylene glycol; and the epoxidation process of prepared polyesters. It allowed obtaining novel epoxy-dicyclopentadiene-terminated polyesters which were successfully used as a component of different styrene content (10?C80?mass%) copolymers. The influence of the structures of polyester and styrene content on the cross-linking density (v e), tg?? max, tg?? max height, storage modulus (E?? 20?°C), FWHM values as well as the thermal stability of copolymers was evaluated by TG, DSC, and DMA analyses and discussed.  相似文献   

5.
Alcoholysis lignin (AL) was dissolved in ethylene glycol and the obtained mixture was reacted with succinic anhydride to form a mixture of ester-carboxylic acid derivatives (AL-polyacid, ALPA). Ethylene glycol-polyacid (EGPA) was also prepared from ethylene glycol. The obtained mixture of ester carboxylic acid derivatives was treated with ethylene glycol diglycidyl ether in the presence of catalytic amount of dimethylbenzylamine to form ester-epoxy resins. The curing reaction was analyzed by Ozawa's method using differential scanning calorimetry. The activation energy of curing reaction in the initial step was found to be ca. 84 kJ mol−1. The molar ratios of epoxy groups to carboxylic acid groups ([EPOXY]/[AA] ratios) were varied from 0.8 to 1.3. The contents of ALPA in the mixture of ALPA and EGPA were also varied from 0 to 100%. Thermal properties of epoxy resins were studied by DSC and thermogravimetry. Glass transition temperatures of epoxy resins showed a maximum value of −11.5 °C when [EPOXY]/[AA] ratio was 1.1. Tg increased with increasing ALPA contents suggesting that lignin acts as a hard segment in epoxy resin networks. Thermal degradation temperatures of epoxy resins slightly decreased with increasing ALPA contents.  相似文献   

6.
Depolymerization of poly(ethylene terephthalate), PET, waste was studied in the presence of manganese acetate catalyst and propylene glycol (PG) at different weight ratios. The glycolyzed products were analyzed for hydroxyl value and the amount of free glycol. A series of unsaturated polyesters based on the glycolyzed products, maleic anhydride and styrene, were prepared. Molecular weights and curing behavior of these polyesters were determined. Polymer concrete (PC) and polymer mortars (PM) made with these resins were investigated for their compressive strength. It has been found that the properties of PC and PM obtained from resins based on recycled PET are comparable to PC and PM made from virgin materials.  相似文献   

7.
Mono- and disaccharides (SAC) such as glucose (Glc), fructose (Frc) and sucrose (Suc), and also alcoholysis lignin (AL) were dissolved in ethylene glycol and each of the obtained mixtures was reacted with succinic anhydride to form a mixture of ester-carboxylic acid derivatives such as SAC-polyacid, SACPA, and AL-polyacid, ALPA. Ethylene glycol-polyacid (EGPA) was also prepared from ethylene glycol. Each of the obtained mixtures of ester carboxylic acid derivatives was reacted with ethylene glycol diglycidyl ether in the presence of a catalytic amount of dimethylbenzylamine to form ester-epoxy resins. The molar ratios of epoxy groups to carboxylic acid groups ([EPOXY]/[ACID] ratios, mol mol−1) was maintained at 1.0. The contents of SACPA and ALPA in the mixtures of SACPA/EGPA, and ALPA/EGPA, respectively, were also varied from 0 to 100 %. The curing reaction of SucPA and ALPA was studied by differential scanning calorimetry (DSC). Activation energy of the curing reaction for the SucPA system was 80.5 kJ/mol. Thermal properties of epoxy resins were studied by DSC. Glass transition temperatures (Tg) decreased with increasing numbers of repeating units in ester chains between cross-linking points, suggesting that ester chain lengths between cross-linking points mainly affect the mobility of ester chains in epoxy resin networks.  相似文献   

8.
An aliphatic polyester has been prepared from ethylene oxide and maleic anhydride that undergoes reversible transformation between amorphous (Tg=18 °C) and crystalline (Tm=124 °C) states through cis–trans isomerization of the C=C bonds in the polymer backbone without any change in either the molecular weight or dispersity of the polymer. A similar transformation was also observed in chiral unsaturated polyesters formed from enantiopure terminal epoxides, such as epichlorohydrin, phenyl glycidyl ether, and (2,3‐epoxypropyl)benzene. These unsaturated polyesters with 100 % E‐configuration in the crystalline state were prepared by quantitative isomerization of their Z‐configuration analogues in the presence of a catalytic amount of diethylamine, while in the presence of benzophenone, irradiation with 365 nm UV light resulted in the transformation of about 30 % trans‐alkene to cis‐maleate form, thereby affording amorphous polyesters.  相似文献   

9.
The synthesis of high-molecular-weight polyesters via the ring-opening alternating copolymerization (ROAC) of cyclic anhydrides and epoxides using organocatalysts remains a major challenge. In this context, the organic cyclic trimeric phosphazene base ( CTPB ) was used as an efficient catalyst for the ROAC of phthalic anhydride (PA) with epoxides. It was found that the activity and PA conversion dramatically increased with the addition of triethyl borane (TEB) as a cocatalyst, even a small amount of TEB, for example, 5 mol % relative to CTPB . The molecular structures of obtained polyesters were characterized by nuclear magnetic resonance (1H NMR, 13C NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF), which demonstrated the formation of perfectly alternating polyesters with unimodal and narrow molecular weight distributions. Different molecular weight polyesters (up to 118.5 kg mol−1) were facilely prepared by reducing the loading of CTPB and TEB, while the polymerizations were fast (turnover frequency, TOF up to 500 h−1). Thermal analysis of the resulting polymers indicated that the alternating polyesters were amorphous, and their Tgs increased with the increment of molecular weights. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 803–810  相似文献   

10.
李彦锋 《高分子科学》2011,29(6):741-749
An anhydride monomer containing ether oxide bridge,7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride (ONA),was successfully synthesized by Diels-Alder reaction of furan and maleic anhydride.The ONA was also studied as an end-cap for the polymerization of monomer reactant(PMR) type polyimides.Three molecular weight levels of the ONA end-capped PMR resins were evaluated.The effects of process conditions of these novel PMR resins on thermal and mechanical properties were investigated.It was demonstrated that the imidized prepolymers using the end-cap have good processability,and the cured polyimide specimens exhibited good thermal stability.The initial decomposition temperature, T_d(ca.580℃) and glass transition temperature,T_g(330℃) of the novel resin(PI-20),prepared under optimum process conditions,compare favorably with the T_d(ca.620℃) and T_g(ca.348℃) of the state-of-the-art resin(PI’-20),respectively.  相似文献   

11.
The alternating copolymerization of propylene oxide with terpene‐based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels–Alder adduct of α‐terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities.  相似文献   

12.
A series of new modified epoxy resin (EP) cured products were prepared from epoxidized soybean oil and commercial epoxy resin, with methyl nadic anhydride as curing agent and 1-methylimidazole as promoting agent. The thermal properties of the resins were characterized by DMA and TG; DSC was used to determine the curing process. Fourier transform infrared spectroscopy was utilized to investigate their molecular structures and scanning electron microscopy was used to observe the micro morphology of their impact fracture surfaces. Tensile and impact testing was employed to characterize the mechanical properties of the cured products. The combination of commercial EP with 20 wt% ESO resulted in a bioresin with the optimum set of properties: 130.5 °C T g, 396.9 °C T 50 %, 74.89 MPa tensile strength, and 48.86 kJ m?2 impact resistance.  相似文献   

13.
To combine temperature responsivity and degradability, novel alternating copolymers with polyester backbone and oligo(ethylene glycol) side chain were designed and prepared by alternating ring‐opening copolymerization of succinic anhydride (SA) and functional epoxide monomer(s). The epoxide monomer containing one ethylene glycol unit, 2‐((2‐methoxyethoxy)methyl)oxirane (MEMO), has displayed similar copolymerization activity to that containing two ethylene glycol units, 2‐((2‐(2‐methoxyethoxy)ethoxy)methyl)oxirane (ME2MO), when copolymerized with SA. This feature led to the formation of alternating copolymers with statistical random distribution of MEMO/ME2MO units along the backbone when mixed MEMO/ME2MO comonomers were fed. These polyesters possess degradability and quantitatively controlled lower critical solution temperature (LCST; 18–50 °C) and Tg (?40 to ?31 °C) both in linear relations with MEMO/ME2MO feed ratio. Fine control of LCST near body temperature is thus realized for the reported degradable and thermoresponsive polyesters, which have promising applications in biomedical fields. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

15.
8,9-Benzo-2-methylene-1,4,6-trioxaspiro[4,4]nonane (BMTN) was prepared by the reaction of phthalide with epichlorohydrin, followed by dehydrochlorination. BMTN was polymerized with di-t-butyl peroxide (DTBP) to give a solyble polymer with a high molecular weight and good thermal stability. The infrared (IR) and nuclear magnetic resonance (NMR) spectra indicated that the polymer structure contained aromatic ester and ketone in the backbone. Tg and Tm of homopolymer of BMTN were, respectively, 98 and 282°C. BMTN was also readily copolymerized with such vinyl monomers as methyl methacrylate (MMA), acrylonitrile (AN), and maleic anhydride (MA), but not with styrene, in the presence of radical initiators. AN and MA, in particular, were spontaneously copolymerized with BMTN in the absence of radical initiators at 40°C. From the results of ultra violet (UV) spectra it is suggested that spontaneous copolymerization proceeds via a charge-transfer complex between BMTN as an electron donor and AN or MA as an acceptor.  相似文献   

16.
Sumin Kim 《Thermochimica Acta》2006,444(2):134-140
The thermal properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The viscoelastic properties of the blends were also studied. Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The TGA results showed that the DTGmax temperature and thermal stability of the blends increased with increasing PVAc content. The blends were examined in non-isothermal DSC experiments at a heating rate of 10 °C/min. There was an exothermic peak in all the heating scanning curves, with each blend displaying a single curing peak temperature (Tp), intermediate between those of the two pure components and varying with the blend composition. The DMTA thermogram of MF resin showed that the storage modulus (E′) increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. E′ of MF resin increased both as a function of increasing temperature and with increasing heating rate.  相似文献   

17.
A series of biodegradable polyesters have been prepared from sebacic acid (SA), glycol (Go) and glycerol (Ge) through a two-step process. First the linear prepolymers were prepared from SA and Go, then crosslinked polyesters were obtained from the prepolymer and Ge with different molar ratios. The resulting samples were characterized by Fourier Transform Infrared Spectrum (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Differential Scanning Calorimetry (DSC). Dynamic Contact Angle tests (DCA) and mechanical tests were also investigated. The enzymatic degradation studies were performed at 37 °C in phosphate buffer solution with porcine pancreas lipase. The resultant polyesters were transparent, flexible, insoluble in organic solvents, and the surfaces of the polyesters were hydrophilic. Young’s modulus, tensile strength, glass transition temperature (Tg) and the degree of enzymatic degradation increased with increasing the content of Ge. It was also worth noticing that the surface content of -COOC- groups was a key factor in the enzymatic degradability.  相似文献   

18.
Thermosetting arylimides were prepared by reaction of sulfone ether diamines with maleic anhydride followed by chemical imidization of the intermediate polyamic acid with acetic anhydride/sodium acetate. These arylimides could be thermally cured to afford heat stable systems possessing high glass transition temperatures (Tg) and moderate to high modulus plateaus above the Tg, depending upon the molecular weight between maleimide sites. The addition type curing process alleviates problems associated with the fabrication of other polyimide systems, since volatiles are not liberated and lowviscosity, high-solids solutions can be prepared in common organic solvents. Thermal, mechanical, adhesive and fabrication characteristics are reported for the sulfone-based arylimides, which indicate utility in spectrum of high-temperature applications.  相似文献   

19.
Abstract

In this work, three epoxy resins including diglycidyl ethers of N,N′-bis(2-hydroxyethyl)pyromellitimide (DIDGE), bisphenol-A (BADGE), and polyethylene glycol (PEDGE) were isothermally cured by an amine curing agent possessing N,N′-disubstituted pyromellitimide units (denoted by DIDAM). DIDGE resin was synthesized from the reaction of N,N′-bis(2-hydroxyethyl)pyromellitimide with an excess of epichlorohydrin. Also, DIDAM curing agent was prepared from the reaction of pyromellitic dianhydride with an excess of ethylene diamine. Completion of the isothermal curing processes was approved by both Fourier transform-infrared spectroscopy and non-isothermal differential scanning calorimetry (DSC). The DSC traces showed only the phase transitions related to the thermal degradation of the resulting thermosets. According to the thermogravimetric analyses, the DIDGE/DIDAM thermoset showed higher thermal stability at temperatures above 425?°C than the other two thermosets. While BADGE/DIDAM and PEDGE/DIDAM thermosets showed about 70% weight loss in the thermal range of 400–850?°C, DIDGE/DIDAM thermoset was encountered with only about 40% weight loss. The glass transition temperatures (Tg ) of the resulting thermosets were determined using tan δ vs temperature plots obtained from dynamic mechanical thermal analysis. The Tg values of BADGE/DIDAM, DIDGE/DIDAM, and PEDGE/DIDAM thermosets were found to be 211?°C, 189?°C, and 81?°C, respectively.  相似文献   

20.
A phenylethynyl‐terminated reactive diluent [Card‐4‐phenylethynylphthalic anhydride (PEPA)], which contained fluorenyl cardo structures, was successfully synthesized and used as a modifier for flexible phenylethynyl‐terminated imide oligomer (PEI‐PEPA). The chemical structure, crosslink characterization, molecular weights, and thermal properties of the products were characterized. The imide systems with addition of 10, 20, 30, and 40 wt% Card‐PEPA to PEI‐PEPA (PEI‐PEPA‐Card) and their cured resin systems were prepared. The thermal curing behaviors of imide systems at different heating rates were analyzed by using differential scanning calorimetry. Thermal properties such as glass transition temperature (Tg) and char yield at 800°C of the resultant resin systems were studied by differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The rheological properties were also investigated using a dynamic rheometry. These properties were found to be outstanding compared with pure PEI‐PEPA. The uncured imide systems exhibited lower Tg and lower isothermal viscosity with addition of Card‐PEPA. Furthermore, the Tg and char yield of the cured resin systems increased with addition of Card‐PEPA. The cured resin systems containing 40 wt% Card‐PEPA exhibited the highest Tg of 359°C and char yield at 800°C of 66.5%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号