首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The results of computational fluid dynamics (CFD) simulations in two and three spatial dimensions are compared to pressure measurements and particle image velocimetry (PIV) flow surveys to assess the suitability of numerical models for the simulation of deep dynamic stall experiments carried out on a pitching NACA 23012 airfoil. A sinusoidal pitching motion with a 10° amplitude and a reduced frequency of 0.1 is imposed around two different mean angles of attack of 10° and 15°. The comparison of the airloads curves and of the pressure distribution over the airfoil surface shows that a three-dimensional numerical model can better reproduce the flow structures and the airfoil performance for the deep dynamic stall regime. Also, the vortical structures observed by PIV in the flow field are better captured by the three-dimensional model. This feature highlighted the relevance of three-dimensional effects on the flow field in deep dynamic stall.  相似文献   

2.
Hydraulic fracture models typically couple a fracture elasticity model with a geological reservoir model to forecast the rate of fluid leak-off from the propagating fracture. The most commonly used leak-off model is that originally specified by Carter, which involves the assumption that the fracture is embedded within an infinite homogenous porous medium where flow only occurs perpendicular to the fracture plane. The objectives of this paper are: (1) to show that assuming one-dimensional leak-off can lead to erroneous conclusions, (2) to present a robust numerical methodology for simulating three-dimensional leak-off from propagating hydraulic fractures, and (3) to present and compare a new analytical method based on assuming three-dimensional flow of an incompressible fluid through an incompressible porous formation from a circular planar fracture. Provided the fluid and formation compressibility can be ignored within the reservoir flow model, the three-dimensional leak-off from a circular planar fracture can be written in closed-form as a function, which depends linearly on fracture pressure and radial extent. This simple expression for leak-off can be easily coupled to a range of circular fracture elasticity models. As a comparison example, the Carter model, our new function and a three-dimensional numerical model of the full problem are coupled to the PK-radial fracture model. Comparison with the numerical model shows that our new function overestimates fracture growth during intermediate times but accurately predicts both the early and late-time asymptotic behavior. In contrast, the Carter model fails to replicate both the early and late-time asymptotic behavior. Our new function additionally improves on the Carter model by not requiring the evaluation of convolution integrals and allowing easy evaluation of both the spatial leakage flux distribution across the fracture face and the three-dimensional pressure distribution within the porous formation.  相似文献   

3.
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann–Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integration method can be developed and adopted to attack complex flows with different Mach numbers. HPF parallel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarily with massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuille- channel flow and pressure-driven gas flows in two-dimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of micro-scale gas flows occuring in the Micro-Electro-Mechanical System (MEMS). The project supported by the National Natural Science Foundation of China (90205009 and 10321002), and the National Parallel Computing Center in Beijing. The English text was polished by Yunming Chen.  相似文献   

4.
The microfluidic system is a multi-physics interaction field that has attracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchannel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.  相似文献   

5.
In this paper, a flow model for avalanches based on the three-dimensional yield criterion is presented in an attempt to allow the relaxation of the assumption of lateral confinement pressure that is adopted in the traditional three-dimensional Savage–Hutter model (S–H model). One of the advantages of this model is that a simplified constitutive relationship for granular flow, which could reveal the internal mechanism of avalanches, is adopted. Additionally, another advantage is that the strength parameters used in the proposed model are readily available for natural materials. The flow properties of avalanches are influenced by the generalized friction coefficient, which is a parameter that can be assessed by introducing the three-dimensional yield criterion. By comparing the results obtained by numerical simulations using the model proposed in this paper and laboratory experiments, a reasonably good agreement can be reached with regard to the prediction of the moving process of avalanches.  相似文献   

6.
The shedding and evolution of the vortical structures generated by a solitary wave propagating over a submerged cylindrical structure are investigated experimentally and numerically. The cylindrical structure consists of two concentric cylinders and represents a simplified model for an offshore submerged intake structure typically used in coastal power plants. Flow visualization by dye injection is used to identify the dominant vortical structures near the structure. The flow visualization results show an unexpected flow reversal that causes shedding of secondary vortical structures. The experimental results are used to check a three-dimensional volume of fluid-large eddy simulation (VOF-LES) numerical model. The VOF-LES model is then used to further study the flow structure. A total of six dominant vortical structures generated by the wave motion are identified, followed by two more generated by the flow reversal. In summary, this paper provides the vorticity evolution for a complex fluid–structure interaction problem and a three-dimensional numerical simulation tool has also been validated, which can be extended to study more complex geometries and wave conditions.  相似文献   

7.
The present work is aimed to give some insight into the relation between vortex shedding modes and transition to three-dimensionality in the wake of a freely vibrating cylinder by establishing a numerical model and analyzing the relevant results of two- and three-dimensional simulations. The compressible flow past an elastically-mounted cylinder is solved by using the immersed boundary method (IB method). The cylinder is free to vibrate in the transverse direction with zero structure damping. The response of displacement amplitude is studied with the variation of reduced velocity. Whether P+S mode exists in three-dimensional flow and the occurrence of 2P mode is caused by flow transition from two-dimensional to three-dimensional are problems of concern. Both 2P and P+S wake modes are observed in two- and three-dimensional simulations. The numerical results indicate that the flow transition from two-dimensional to three-dimensional is coupled with the cylinder vibration in the synchronization/lock-in regime. The wake formation given by three-dimensional simulations suggests that the P+S mode might exist in reality when the flow is reverted to two-dimensional by vortex induced vibration (VIV) at Re=300–350. When Reynolds number increases to 425, the wake formation undergoes transition to three-dimensionality and 2P mode is observed. The effect of mass ratio on the flow transition to three-dimensionality is studied. The relationship between wake modes and aerodynamic forces is discussed.  相似文献   

8.
基于连续介质或者离散裂隙假设,含裂隙的多孔介质渗流问题有多种数学力学模型。受物理界面的启发,提出一种新的有限裂隙连续介质力学模型,可以为宏观裂隙-多孔介质内的流体输运问题等提供近似计算方案。该模型属于一类双重介质模型,将曲面上低维度的流场转化为三维空间的流场,并且与连续的多孔介质的流场耦合,在数学上表示为统一的输运控制方程和初始边界条件。这个近似模型为不方便实施高维度-低维度耦合求解的数值计算方法提供新的模拟思路,如光滑粒子流体动力学等无网格粒子类方法。  相似文献   

9.
A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with comparisons with detailed experimental data, available in the literature, serving to validate the numerical results. The continuity constraint method, implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-dimensional numerical simulations of this step geometry underestimate the experimentally determined extent of the primary separation region for Reynolds numbers Re greater than 400. It has been postulated that this disagreement between physical and computational experiments is due to the onset of three-dimensional flow near Re ≈ 400. This paper presents a full three-dimensional simulation of the step geometry for 100⩽ Re⩽ 800 and correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous numerical studies have discussed possible instability modes which could induce a sudden onset of three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the sidewall on the development of three-dimensional flow for Re greater than 400. Of particular interest is the characterization of three-dimensional vortices in the primary separation region immediately downstream of the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character and extent of the sidewall-induced flow are investigated for 100⩽Re⩽ 800. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Three-dimensional viscoelastic flows in a rectangular channel with a cavity were studied both numerically and experimentally. In the numerical study, computations were carried out using the Phan-Thien–Tanner (PTT) model as a constitutive equation. A finite volume method (FVM) using colocated grids was applied. A three-dimensional structure in the cavity was observed even when three-dimensional behavior was not remarkable in main flows. At high Weissenberg number, the flow in the cavity spirals to move towards the center plane of the channel. In the experiments, the flow of polymer solutions was visualized to observe three-dimensional flow behavior near the cavity part. It was confirmed that the spiraling flow moving towards the center plane emerged in the cavity.  相似文献   

11.
A rigorous model of the fully elliptic flow over the blade-to-blade stream surface in an annular aerofoil cascade is developed. The model accuracy stems from its precise simulation of the meridional hub-to-casing flow effects, including those of the shear stress components that are created by the spanwise velocity gradients. These stresses are unprecedentedly introduced in the flow-governing equations in the form of source terms and are modelled as such. The final set of flow-governing equations are solved using the Galerkin weighted residual method coupled with a biquadratic finite element of the Lagrangian type. The flow solution is verified against the numerical results of a fully three-dimensional flow model and a set of experimental data, both concerning a low-aspect-ratio stator of an axial flow turbine under a low Reynolds number and subsonic flow operation mode. The numerical results in this case show well predicted aerofoil loading and pitch-averaged exit flow conditions. Also evident is a substantial capability of the analysis in modelling such critical regions as the wake subdomain. It is further proven that the new terms in the governing equations enhance the quality of the numerical predictions in this class of flow problems.  相似文献   

12.
翼型与风洞侧壁交接角区分离流动研究   总被引:1,自引:0,他引:1  
焦予秦  乔志德 《力学学报》2002,34(5):785-789
运用Navier-Stokes数值模拟对翼型模型试验时风洞侧壁和翼型模型结合部拐角区黏型分离流动进行模拟,并将简单代数湍流模型扩展用于机翼/风洞侧壁拐角区流动.计算格式在空间上采用中心有限体积离散,在时间上采用多步Runge-Kutta时间步长格式进行积分.结果显示,在翼型模型风洞试验时,模型/侧壁拐角区、模型表面、侧壁表面和模型后形成复杂的黏性分离流动和二次分离,对实验结果产生很大的影响.  相似文献   

13.
A numerical study of three-dimensional incompressible viscous flow inside a cubical lid-driven cavity is presented. The flow is governed by two mechanisms: (1) the sliding of the upper surface of the cavity at a constant velocity and (2) the creation of an external gradient for temperature and solutal fields. Extensive numerical results of the three-dimensional flow field governed by the Navier-Stokes equations are obtained over a wide range of physical parameters, namely Reynolds number, Grashof number and the ratio of buoyancy forces. The preceding numerical results obtained have a good agreement with the available numerical results and the experimental observations. The deviation of the flow characteristics from its two-dimensional form is emphasized. The changes in main characteristics of the flow due to variation of Reynolds number are elaborated. The effective difference between the two-dimensional and three-dimensional results for average Nusselt number and Sherwood number at high Reynolds numbers along the heated wall is analyzed. It has been observed that the substantial transverse velocity that occurs at a higher range of Reynolds number disturbs the two-dimensional nature of the flow.  相似文献   

14.
A numerical method as well as a theoretical study of non-Darcy fluid flow through porous and fractured reservoirs is described. The non-Darcy behavior is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The non-Darcy flow through a fractured reservoir is handled using a general dual-continuum approach. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in petroleum and geothermal reservoirs.  相似文献   

15.
In this study, a large eddy simulation of the three-dimensional shear flow over a flow-excited Helmholtz resonator has been implemented. The simulations have been performed over a wide range of flow speeds to analyse the effect of the inlet flow properties on the excitation condition. For validation proposes, the results obtained from the numerical simulations have been compared with published experimental data and show that numerical modelling provides an accurate representation of the pressure fluctuations inside the cavity. The main objective of this paper is to gain an understanding of the flow features over a flow-excited Helmholtz resonator. To this end, using the numerical model, the interaction of a turbulent boundary layer with a Helmholtz resonator has been considered, and the characteristics of the flow inside the resonator and over the orifice for various flow conditions are also analysed.  相似文献   

16.
基于Boltzmann模型方程的气体运动论统一算法研究   总被引:1,自引:0,他引:1  
李志辉  张涵信 《力学进展》2005,35(4):559-576
模型方程出发,研究确立含流态控制参数可描述不同流域气体流动特征的气体分子速度分布函数方程; 研究发展气体运动论离散速度坐标法, 借助非定常时间分裂数值计算方法和NND差分格式, 结合DSMC方法关于分子运动与碰撞去耦技术, 发展直接求解速度分布函数的气体运动论耦合迭代数值格式; 研制可用于物理空间各点宏观流动取矩的离散速度数值积分方法, 由此提出一套能有效模拟稀薄流到连续流不同流域气体流动问题统一算法. 通过对不同Knudsen数下一维激波内流动、二维圆柱、三维球体绕流数值计算表明, 计算结果与有关实验数据及其它途径研究结果(如DSMC模拟值、N-S数值解)吻合较好, 证实气体运动论统一算法求解各流域气体流动问题的可行性. 尝试将统一算法进行HPF并行化程序设计, 基于对球体绕流及类``神舟'返回舱外形绕流问题进行HPF初步并行试算, 显示出统一算法具有很好的并行可扩展性, 可望建立起新型的能有效模拟各流域飞行器绕流HPF并行算法研究方向. 通过将气体运动论统一算法推广应用于微槽道流动计算研究, 已初步发展起可靠模拟二维短微槽道流动数值算法; 通过对Couette流、Poiseuille流、压力驱动的二维短槽道流数值模拟, 证实该算法对微槽道气体流动问题具有较强的模拟能力, 可望发展起基于Boltzmann模型方程能可靠模拟MEMS微流动问题气体运动论数值计算方法研究途径.   相似文献   

17.
The gravitational air–grain Rayleigh–Taylor (RT) flow instability in a Hele-Shaw cell was studied using a parallel three-dimensional discrete particle model (DPM). The onset of flow instability and the development of fingering flow structures were well captured by the model. Power spectra analysis of solid volume fraction field indicated the non-linear coarsening process of the fingering flow structures. The sensitivity of the flow patterns to the initial porosity, the Atwood number, and the ratio of particle size to the Hele-Shaw cell width was also demonstrated. The excellent agreement of DPM simulation results with the reported experimental observations proved the robustness and reliability of the numerical approach to model complex multiphase flows such as granular RT instability.  相似文献   

18.
The theory of a lifting surface is used to construct a model of three-dimensional unsteady flow past a pair of flapping wings in the regime of normal hovering flight. A numerical method is used to make an aero-dynamic calculation of the wings and find kinematics generating a lift sufficient for the flight of an insect.  相似文献   

19.
A numerical model for the compressible Navier–Stokes equations using local mesh embedding is presented. The model solves for three-dimensional turbulent flow using an algebraic mixing length model of turbulence. The technique of control volume upwinding is used to produce a novel treatment, whereby the hanging nodes on the mesh interfaces are left with null control volumes. This yields an efficient discretization scheme which ensures second-order accuracy, flux conservation and stability at the mesh interfaces, whilst retaining a simple interpolative treatment for the hanging nodes. The discrete flow equations are solved using the semi-implicit pressure correction method. The accuracy of the embedded mesh solver is demonstrated by modelling the three-dimensional flow through a cascade of turbine vanes at design and off-design conditions. Mesh embedding gives a saving of 48% in the number of nodes. The embedded mesh solutions compare well with fine structured mesh solutions and experimental measurements. The capability of the embedded mesh solver to perform solution adaptive calculations is demonstrated using a two-dimensional mid-height section of the cascade at the off-design flow conditions.  相似文献   

20.
The paper presents results of numerical simulation of unsteady three-dimensional flow in the two high-head hydraulic turbines. The numerical technique for calculating of low-frequency pressure pulsations in a hydraulic turbine is based on the DES turbulence model and the approach of rotated reference frame. The paper also presents the analysis of the flow structure behind the runner of the turbines, as well as shows the effect of the flow structure on the frequency and intensity of non-stationary processes in the turbines. Besides, the behavior of the pulsations in the hydraulic turbines was defined. Comparison of the calculation results with the experimental data has shown close agreement between theory and experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号