首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel. Two-dimensional particle image velocimetry (PIV) and one-dimensional laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers ( \text5,600 £ Re £ \text37,000\text{5,600} \le Re \le \text{37,000}). Two-dimensional PIV field measurements were thoroughly validated by means of point-by-point 1D LDA measurements at certain positions of the flow. A detailed study of the periodicity and the homogeneity was undertaken, which demonstrates that the flow can be regarded as two-dimensional and periodic for Re 3 \text10,000Re \ge \text{10,000}. We found a decreasing reattachment length with increasing Reynolds number. This is connected to a higher momentum in the near-wall zone close to flow separation which comes from the velocity speed up above the obstacle. This leads to a velocity overshoot directly above the hill crest which increases with Reynolds number as the inner layer depth decreases. The flow speed up above that layer is independent of the Reynolds number which supports the assumption of inviscid flow disturbance in the outer layer usually made in asymptotic theory for flow over small hills.  相似文献   

2.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   

3.
A new and unique high-resolution image acquisition system for digital particle image velocimetry (DPIV) in turbulent flows is used for the measurement of fully-developed turbulent pipe flow at a Reynolds number of 5300. The flow conditions of the pipe flow match those of a direct numerical simulation (DNS) and of measurements with conventional (viz., photographic) PIV and with laser-Doppler velocimetry (LDV). This experiment allows a direct and detailed comparison of the conventional and digital implementations of the PIV method for a non-trivial unsteady flow. The results for the turbulence statistics and power spectra show that the level of accuracy for DPIV is comparable to that of conventional PIV, despite a considerable difference in the interrogation pixel resolution, i.e. 32 × 32 (DPIV) versus 256 × 256 (PIV). This result is in agreement with an earlier analytical prediction for the measurement accuracy. One of the advantages of DPIV over conventional PIV is that the interrogation of the DPIV images takes only a fraction of the time needed for the interrogation of the PIV photographs.  相似文献   

4.
We present an experimental investigation of a turbulent boundary layer flow at a significant adverse pressure gradient at Reynolds number Re θ ?=?10000 using large field PIV. The testcase is designed to start from a zero pressure gradient flow at Re θ ?=?8000 with a distinct log-law region following a slowly rising adverse pressure gradient. This allows to reveal a breakdown of the log-law under the effect of the adverse pressure gradient. The region described by the log-law is progressively reduced in terms of y ?+? and then joins into a modified log-law which gives a good fit to the data up to at least y/δ 99?≈?0.2. The scaling in the overlap region is demonstrated using the mean velocity slope diagnostic function, enabled due to the high quality of the PIV data. Locally, the velocity profile is measured down to the wall using long-range microscopic PIV with particle tracking velocimetry to determine the wall shear stress directly in the adverse pressure gradient region.  相似文献   

5.
An experimental investigation of vortex generators has been carried out in turbulent backward-facing step (BFS) flow. The Reynolds number, based on a freestream velocity U0 = 10 m/s and a step height h = 30 mm, was Reh = 2.0 × 104. Low-profile wedge-type vortex generators (VGs) were implemented on the horizontal surface upstream of the step. High-resolution planar particle image velocimetry (2D-2C PIV) was used to measure the separated shear layer, recirculation region and reattachment area downstream of the BFS in a single field of view. Besides, time-resolved tomographic particle image velocimetry (TR-Tomo-PIV) was also employed to measure the flow flied of the turbulent shear layer downstream of the BFS within a three-dimensional volume of 50 × 50 × 10 mm3 at a sampling frequency of 1 kHz. The flow control result shows that time-averaged reattachment length downstream of the BFS is reduced by 29.1 % due to the application of the VGs. Meanwhile, the Reynolds shear stress downstream of the VGs is considerably increased. Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) have been applied to the 3D velocity vector fields to analyze the complex vortex structures in the spatial and temporal approaches, respectively. A coherent bandwidth of Strouhal number 0.3 < Sth < 0.6 is found in the VG-induced vortices, and moreover, Λ-shaped three-dimensional vortex structures at Sth = 0.37 are revealed in the energy and dynamic approaches complementarily.  相似文献   

6.
In the present study, we employed stereoscopic particle image velocimetry (PIV) to investigate the characteristics of turbulence structures in a drag-reduced turbulent channel flow with addition of surfactant. The tested drag-reducing fluid was a CTAC/NaSal/Water (CTAC: cetyltrimethyl ammonium chloride; NaSal: sodium salicylate) system at 25°C. The weight concentration of CTAC was 30 ppm. Stereoscopic PIV measurement was performed for a water flow (Re=1.1×104) and a CTAC solution flow (Re=1.5×104 with 54% drag reduction) in both the streamwise–spanwise and wall-normal-spanwise planes, respectively. The three-dimensionality of hairpin vortex structures in the near-wall region for wall-bounded turbulent flow was reproduced by conditionally averaging the stereoscopic two-dimensional-three-component velocity fields. A series of wall-normal vortex cores were found to align with the near-wall low-speed streaks with opposite vorticity signals at both sides of the streaks and with the vorticity decreased on average by about one order of magnitude in CTAC solution flow compared with water flow; the spanwise spacing between the near-wall low-speed streaks in the solution flow is increased by about 46%. The streamwise vorticity of the vortex cores appearing in the wall-normal-spanwise plane was also decreased by the use of drag-reducing surfactant additives.  相似文献   

7.
The vortical structure of near-wake behind a sphere is investigated using a PIV technique in a circulating water channel at Re = 11,000. The measured velocity fields show a detailed vortical structure in the recirculation region such as recirculation vortices, reversed velocity zone, and out-of-plane vorticity distribution. The vorticity distribution of the sphere wake shows waviness in cross-sectional planes. The time-averaged turbulent structures are consistent with the visualized flow showing the onset of shear layer instability. The spatial distributions of turbulent intensities provide turbulent statistics for validating numerical predictions.  相似文献   

8.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

9.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

10.
 High-resolution, reactive Mie scattering laser-sheet visualizations, two-color digital particle image velocimetry (DPIV) and thermal anemometry measurements in flows generated by equivalent coaxial circular and square jets are presented. Visualization results were obtained for three square, coaxial configurations, and a reference circular coaxial nozzle, at two Reynolds numbers of the outer jet (19,000 and 29,000) and for inner-to-outer jet velocity ratios of 0.15, 0.22, and 0.3. These indicated that the internal unmixed region diminished with decreasing velocity ratio. Strong evidence of unsteady recirculation and back-flow was observed at the end of the core of the inner jet, for the low velocity ratios. Comparisons between circular and square jet configurations indicated considerable mixing enhancement when square nozzles were used. Low-coherence, organized large-scale structure was evident from the visualizations and DPIV measurements near the origin of the inner mixing-region shear layers, and more so in the core region of the near field. These observations were confirmed by velocity spectra, which displayed peaks corresponding to a free shear-layer instability mode in the inner mixing-region shear layers, and a wake-type mode in the core region where the mean flow has a wake-like character. Although some large-scale structure was observed in the outer mixing layer during the visualizations, this was found to be incoherent on the basis of the DPIV measurements and the velocity spectra. It is noted that no axis-switching phenomena were observed in the square nozzle flows examined here. This is attributed to the absence of an organized structure in the outer shear layer, which was initially highly turbulent, and the weakly coherent nature of the organized structure observed in the inner mixing-region near field. Received: 2 November 1998/Accepted: 8 September 2000  相似文献   

11.
12.
Particle image velocimetry (PIV) measurements and planar laser induced fluorescence (PLIF) visualizations have been made in a turbulent boundary layer over a rough wall. The wall roughness consisted of square bars placed transversely to the flow at a pitch to height ratio of λ/k = 11 for the PLIF experiments and λ/k = 8 and 16 for the PIV measurements. The ratio between the boundary layer thickness and the roughness height k/δ was about 20 for the PLIF and 38 for the PIV. Both the PLIF and PIV data showed that the near-wall region of the flow was populated by unstable quasi-coherent structures which could be associated to shear layers originating at the trailing edge of the roughness elements. The streamwise mean velocity profile presented a downward shift which varied marginally between the two cases of λ/k, in agreement with previous measurements and DNS results. The data indicated that the Reynolds stresses normalized by the wall units are higher for the case λ/k = 16 than those for λ/k = 8 in the outer region of the flow, suggesting that the roughness density effects could be felt well beyond the near-wall region of the flow. As expected the roughness disturbed dramatically the sublayer which in turn altered the turbulence production mechanism. The turbulence production is maximum at a distance of about 0.5k above the roughness elements. When normalized by the wall units, the turbulence production is found to be smaller than that of a smooth wall. It is argued that the production of turbulence is correlated with the form drag.  相似文献   

13.
The structure of turbulence in a drag-reduced flat-plate boundary layer flow has been studied with particle image velocimetry (PIV). Drag reduction was achieved by injection of a concentrated polymer solution through a spanwise slot along the test wall at a location upstream of the PIV measurement station. Planes of velocity were measured parallel to the wall (xz plane), for a total of 30 planes across the thickness of the boundary layer. For increasing drag reduction, we found a significant modification of the near-wall structure of turbulence with a coarsening of the low-speed velocity streaks and a reduction in the number and strength of near-wall vortical structures.  相似文献   

14.
The turbulent flow over a circular cavity with an aspect ratio of D/H = 2 is investigated by multi-planar stereoscopic particle image velocimetry and with tomographic particle image velocimetry (PIV). The main aim of the study is the flow topology and the turbulent structure of the asymmetrical flow pattern that forms inside the cavity at these specific conditions. The flow field is measured in the vertical symmetry plane to describe the overall recirculation pattern in the cavity and the turbulent shear layer developing from the separation point. In this specific regime the shear layer fluctuations are recognized as those caused by instabilities together with the effect of the incoming boundary layer turbulence. Additional observations performed at several wall-parallel planes at different height inside the cavity allow to further evaluate the secondary flow circulation generated by this asymmetric regime. The observed flow pattern consists of a steady vortex, occupying the entire cavity volume and placed diagonally inside the cavity such to entrain the external flow from one side, capture it into a circulatory motion and eject it from the opposite side of the cavity. The spatial distribution of the turbulent fluctuations also reveals the same structure. The tomographic PIV measurement returns a visual inspection to the instantaneous three-dimensional structure of the turbulent fluctuations, which at the investigated height exhibit a low level of coherence with slightly elongated vortices in the recirculating flow inside the cavity.  相似文献   

15.
The flow behind perforated Gurney-type flaps was investigated by using particle image velocimetry (PIV) at Re = 5.3 × 104. The PIV measurements were supplemented by force balance and surface pressure data. The near wake was disrupted and narrowed, indicative of a reduced drag, with increasing flap perforation and had a drastically suppressed fluctuating intensity. Depending on the strength of the perforation-generated jet, the vortex shedding process behind the flap could be eliminated. The flap porosity also led to reduced positive camber effects and the decompression of the cavity flow (upstream of the flap), as well as decreased upper and lower surface pressures, compared to the solid flap. The reduction in the drag, however, outweighed the loss in lift and rendered an improved lift-to-drag ratio.  相似文献   

16.
Tomographic and time resolved PIV measurements were performed to examine the 3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder at Re ≈ 1 ×  105. This generic experiment is of fundamental interest because it represents flow features which are relevant to many applications such as laminar separation bubbles and turbulent reattachment. At Re  ≈ 1 × 105, laminar separation bubbles arise on the side of the cylinder. Furthermore, on the top of the cylinder a separation with reattachment is of major interest. The tomographic PIV measurement, which allows to determine all three velocity components in a volume instantaneously, was applied to examine the flow topology and interaction between the boundary layer and wake structures on the top of the finite cylinder. In the instantaneous flow fields the tip vortices and the recirculation region becomes visible. However, it is also observed that the flow is quite unsteady due to the large separation occurring on the top of the cylinder. In order to study the temporal behaviour of the separation, time resolved PIV was applied. This technique allows capturing the dynamic processes in detail. The development of vortices in the separated shear layer is observed and in addition regions with different dominant frequencies are identified.  相似文献   

17.
The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase the spatial resolution of the velocity measurement to a maximum of 1.8 mm×3.1 mm. Velocity validation tests in fully developed laminar pipe flow showed good agreement with both optical PIV measurements and the expected parabolic profile. A dynamic range of 1 to 60 cm/s has been obtained to date.  相似文献   

18.
Although vortex-induced vibration (VIV) has been extensively studied, much of existing literature deals with uniform flow in the absence of a boundary. The VIV flow field of a structure close to a boundary generally remains unexplored, but it can have important engineering implications, such as pipeline scour if the boundary is an erodible seabed. In this paper, laboratory experiments are performed to investigate the flow characteristics of an elastically mounted circular cylinder undergoing VIV, and a rigid plane boundary is considered to simplify the problem. The initial gap-to-diameter ratio is fixed at 0.8, and six different reduced velocities are considered. The velocity field is measured using a high resolution particle image velocimetry (PIV) system, which has several advantages over traditional PIV systems, including high sampling rate and the ability to mitigate scatter of laser light near the boundary, allowing accurate measurements at the viscous sublayer. This paper presents the vibration amplitude and oscillation frequency for different Vr; in addition, the mean velocity field, turbulence characteristics, vortex behavior, gap flow velocity, and normal/shear stresses on the boundary were measured/calculated, leading to new insights on the flow field behavior.  相似文献   

19.
Subharmonic-perturbed shear flow downstream of a two-dimensional backward-facing step was experimentally investigated. The Reynolds number was Reh = 2.0 ×104, based on free-stream velocity and step height. Planar 2D-2C particle image velocimetry was employed to measure the separating and reattaching flow in the horizontal-vertical plane in the center position. The subharmonic perturbations were generated by an oscillating flap which was implemented over the step edge and driven by periodic Ampere force. The subharmonic frequency was 55 Hz as the half of the fundamental frequency of the turbulent shear layer. As a result of the subharmonic perturbations, the size of recirculation region behind the backward-facing step is reduced and the time-averaged reattachment length is 31.0% shorter than that of the natural flow. The evolution of vortices, including vortex roll-up, growth and breakdown process, is analyzed by using phase-averaging, cross-correlation function and proper orthogonal decomposition. It is found that Reynolds shear stress is considerably increased in which the vortices roll up and then break down further downstream. In particular, rapid growth of vortices based on the “step mode” occurs at approximate half of the recirculation region, caused by in interaction between the shear layer and the recirculation region. Furthermore, the coherent structures, which are represented by a phase-correlated POD mode pair, are reconstructed in phases in order to show regular patterns of the subharmonic-perturbed coherent structures.  相似文献   

20.
The purpose of the present work is to study the various specific time scales of the turbulent separating flow around a square cylinder, in order to determine the Reynolds number effect on the separating shear layer, where occurs a transition to turbulence. Unsteady analysis based on large eddy simulation (LES) at intermediate Reynolds numbers and laser doppler velocimetry (LDV) measurements at high Reynolds numbers are carried out. The Reynolds number, based on the cylinder diameter D and the inflow velocity U o , is ranging from Re?=?50 to Re?=?300,000. A special focus is performed on the coherent structures developing on the sides and in the wake of a square cylinder. For a large Reynolds number range above Re?≈?1,000, both signatures of Von Karman (VK) and Kelvin–Helmholtz (KH) type vortical structures are found on velocity time samples. The combination of their frequency signature is studied based on Fourier and wavelet analysis. In the present study, We observe the occurrence of KH pairings in the separating shear layer on the side of the cylinder, and confirm the intermittency nature of such a shear flow. These issues concerning the structure of the near wake shear layer which were addressed for the round cylinder case in a recent experimental publication (Rajagopalan and Antonia, Exp Fluids 38:393–402, 2005) are of interest in the present flow configuration as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号