首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through density functional theory calculations, the impact of edge functionalization with O, OH, and alternate termination of them (OHO) on the structural stabilities, electronic and magnetic properties of blue phosphorene nanoribbons (BPNR) are mainly investigated. The formation energies demonstrate that the O-termination on the BPNRs is the most stable, and OHO-termination is more stable than OH-termination, besides the ab initio dynamic simulation show that they are all thermal dynamically stable at room temperature. Both the ground structures of O- and OH-BPNRs are spin-polarized semiconductors, while OH-functionalized BPNRs are nonmagnetic semiconductors. As the ribbon width increasing, the band gaps of O-aBPNRs tend to 1.04 eV, but that of OH-aBPNRs tend to 1.97 eV, comparable with the band gap of single-layer blue phosphorene, since it is dominated by pz electrons of the inner P atoms. In contrast, the influence of OHO-termination on GNRs, SiNRs, and black PNRs are also studied. Our results demonstrate that OHO-terminated GNRs and SiNRs are not a simple summation of O- and OH-terminated GNRs and SiNRs, and they are nonmagnetic stable both with zigzag and armchair edges, presenting metallic properties. While the OHO-terminated black PNRs present similar electronic and magnetic properties with OHO-terminated blue PNRs, and both the OHO-terminated zigzag and armchair edges are spin-polarized stable. These results provide potential help in the fields of band gap engineering and the designing of phosphorus-based spin devices with control over spin in spintronics.  相似文献   

2.
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5-3.0 eV for ribbons of width 2.4-0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.  相似文献   

3.
Using the first-principles calculations, electronic properties for the F-terminated AlN nanoribbons with both zigzag and armchair edges are studied. The results show that both the zigzag and armchair AlN nanoribbons are semiconducting and nonmagnetic, and the indirect band gap of the zigzag AlN nanoribbons and the direct band gap of the armchair ones decrease monotonically with increasing ribbon width. In contrast, the F-terminated AlN nanoribbons have narrower band gaps than those of the H-terminated ones when the ribbons have the same bandwidth. The density-of-states (DOS) and local density-of-states (LDOS) analyses show that the top of the valence band for the F-terminated ribbons is mainly contributed by N atoms, while at the side of the conduction band, the total DOS is mainly contributed by Al atoms. The charge density contour analyses show that Al–F bond is ionic because the electronegativity of F atom is much stronger for F atom than for Al atom, while N–F bond is covalent because of the combined action of the stronger electronegativity and the smaller covalent radius.  相似文献   

4.
We study quantum transport in honeycomb lattice ribbons with either armchair or zigzag edges. The ribbons are coupled to semi-infinite linear chains serving as the input and output leads and we use a tight-binding Hamiltonian with nearest-neighbor hops. The input and output leads are coupled to the ribbons through bar contacts. In narrow ribbons we find transmission gaps for both types of edges. The appearance of this gap is due to the enhanced quantum interference coming from the multiple channels in bar contacts. The center of the gap is at the middle of the band in ribbons with armchair edges. This particle-hole symmetry is because bar contacts do not mix the two sublattices of the underlying bipartite honeycomb lattice when the ribbon has armchair edges. In ribbons with zigzag edges the gap center is displaced to the right of the band center. This breakdown of particle-hole symmetry is the result of bar contacts now mixing the two sublattices. We also find transmission oscillations and resonances within the transmitting region of the band for both types of edges. Extending the length of a ribbon does not affect the width of the transmission gap, as long as the ribbon’s length is longer than a critical value when the gap can form. Increasing the width of the ribbon, however, changes the width of the gap. In ribbons with zigzag edges the gap width systematically shrinks as the width of the ribbon is increased. In ribbons with armchair edges the gap is not well-defined because of the appearance of transmission resonances. We also find only evanescent waves within the gap and both evanescent and propagating waves in the transmitting regions.  相似文献   

5.
We have investigated the electronic and magnetic properties of copper-family-element (CFE) atom adsorbed graphene nanoribbons (GNRs) with zigzag edges using first-principles calculations based on density functional theory. We found that CFE atoms energetically prefer to be adsorbed at the edges of nanoribbons. Charges are transferred between the CFE atom and carbon atoms at the edge, which reduce the local magnetic moment of carbon atoms in the vicinity of adsorption site and change the electronic structure of GNRs. As a result, Cu adsorbed zigzag GNR is a semiconductor with energy band gap of 0.88 eV in beta-spin and energy gap of 0.22 eV in alpha-spin, while Ag adsorbed zigzag GNR and Au adsorbed zigzag GNR are both half-metallic with the energy gaps of 0.68 eV and 0.63 eV in beta-spin, respectively. These results show that CFE atom adsorbed zigzag GNRs can be applied in nanoelectronics and spintronics.  相似文献   

6.
We have investigated the electronic properties of bare, H-terminated, Cu-terminated and Cu-doped armchair graphene nanoribbons (AGNRs) using ab-initio approach. We found that H-termination enhances the stability and band gap whereas H extraction introduces dangling bands and lowers the band gap making bare ribbons indirect band gap semiconductors. The calculations revealed that strong hybridization between Cu atoms and AGNRs, lessen the band gap for Cu-terminated ribbons and gives rise to metallicity in Cu-doped AGNRs irrespective of their widths. Formation energy of considered ribbons yield that H-terminated AGNRs with lowest formation energy are most energetically favored, next are one edge Cu-terminated ribbons followed by bare ones whereas both edges Cu-doped ribbons are least energetically plausible. We predict that presence of Cu atoms in GNRs, significantly alter the band gap and can be used in band gap engineering of nanoribbons.  相似文献   

7.
Frank J. Owens 《Molecular physics》2013,111(21-23):2441-2443
The electronic properties, band gap and ionization potential as well as the energies of the singlet and triplet states of zigzag and armchair graphene nanoribbons are calculated as a function of the number of oxygen atoms on the ribbon employing density functional theory at B3LYP/6-31G* level. The calculated band gaps indicate that both structures are semiconducting. The band gap of the armchair ribbons initially decreases followed by an increase with oxygen number. For zigzag ribbons the band gap decreases with increasing oxygen number whereas the ionization potential increases with oxygen content. In both armchair and zigzag ribbons the ionization potential shows a gradual increase with the number of oxygen atoms. Some of the oxygenated ribbons calculated have triplet ground states and have the density of states at the Fermi level for spin down greater than spin up suggesting the possibility they may be ferromagnetic semiconductors.  相似文献   

8.
We report about results from density functional based calculations on structural, electronic and transport properties of one-dimensional MoS2 nanoribbons with different widths and passivation of their edges. The edge passivation influences the electronic and transport properties of the nanoribbons. This holds especially for nanoribbons with zigzag edges. Nearly independent from the passivation the armchair MoS2 nanoribbons are semiconductors and their band gaps exhibit an almost constant value of 0.42 eV. Our results illustrate clearly the edge priority on the electronic properties of MoS2 nanoribbons and indicate problems for doping of MoS2 nanoribbons.  相似文献   

9.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

10.
程诚  韩晗  任翠兰  王昌英  邵宽  怀平 《中国物理 B》2016,25(8):86301-086301
The first principles density-functional theoretical calculations of U adatom adsorption and diffusion on a planar graphene and quasi-one-dimensional graphene nanoribbons(GNRs) are performed. An energetic preference is found for U adatom diffusing to the hollow sites of both graphene and GNRs surface. A number of U distinctive diffusion paths either perpendicular or parallel to the ribbon growth direction are examined. The edge effects are evidenced by the calculated energy barriers of U adatom diffusion on armchair and zigzag nanoribbons surfaces. The calculation results indicate that the diffusion of U adatom from the inner site toward the edge site is a feasible process, particularly in zigzagGNR. It is viable to control the initial morphology of nuclear carbon material to retard the diffusion and concentration of nuclides.  相似文献   

11.
We studied theoretically the electronic transport of metallic graphene nanoribbons (GNRs) with two vacancies using the tight-binding model and Green’s function method. The results show that the conductance of zigzag GNR (ZGNR) varies with the relative position of two vacancies. However, when two vacancies reside on the edges, the conductance remain unchanged compared to that of perfect GNRs due to the interaction between vacancy state and edge state. Moreover, the conductance at the Fermi level for armchair GNR (AGNR) can be zero or finite depending on the position of vacancies on the GNRs. The demonstrated features of electronic transport open extremely attractive perspectives for designing well-defined GNR-based nanoelectronic devices.  相似文献   

12.
Phosphorene (a monolayer of black phosphorus) recently spurred much attention due to its potential for application. We notice there are two types of zigzag edge and two types of armchair edge for phosphorene lattice. We study the winding number of various types of edge of phosphorene ribbons and conclude that, besides on the typical zigzag edge, the flat zero-energy edge band can be found in the ribbon of another nontypical armchair edge. The localization of these edge bands is investigated analytically. We find every single edge state of the atypical armchair edge decays to the bulk at two different decay rates.  相似文献   

13.
The electronic specific heat of nanographite ribbons exhibits rich temperature dependence, mainly owing to the special band structures. The thermal property strongly depends on the geometric structures, the edge structure and the width. There is a simple relation between the ribbon width and the electronic specific heat for the metallic or semiconducting armchair ribbons. However, it is absent for the zigzag ribbons. The metallic armchair ribbons exhibit linear temperature dependence. The semiconducting armchair ribbons exhibit composite behavior of power and exponential functions. As for the zigzag ribbons, the temperature dependence of the specific heat is proportional to T1−p. The value of p quickly increases from to 1 as the ribbon width gradually grows. The zigzag ribbons might be the first system which exhibits the novel temperature dependence. The nanographite ribbons differ from an infinite graphite sheet, which illustrates that the finite-size effects are significant.  相似文献   

14.
曾永昌  田文  张振华 《物理学报》2013,62(23):236102-236102
利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性. 研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属. 而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加. 深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应. 这些研究对于发展纳米电子器件有重要的意义. 关键词: 石墨烯纳米带 纳米洞 内边缘氧饱和 电子特性  相似文献   

15.
Combined with three spin configurations, the effects of the dangling bonds on the electronic and magnetic properties of both zigzag edge and armchair edge Si nanoribbions (ZSiNR and ASiNR) have been investigated systematically by the first-principles calculations in the local spin-density function theory. The dangling bonds at one edge or both edges make ZSiNR to transform from ferromagnetic state of the perfect ZSiNR to antiferromagnetic state. However, the dangling bonds at one edge and both edges make ASiNR to transform from nonmagnetic semiconductor of the perfect ASiNR to ferromagnetic and antiferromagnetic metals, respectively. Furthermore, the magnetic moment of the ferromagnetic state increases for the perfect bare one edge and bare both edges successively for either ZSiNR or ASiNR.  相似文献   

16.
A single-wall carbon nanotube (SWCNT) can be visualized as a graphene rolled into a cylinder. Tight-binding band structure calculations, with hopping between nearest-neighbor π orbitals only (NNTB), established rules by which both the mode in which the graphene is rolled up and the diameter determine whether the SWCNT is a metal or a semiconductor. However, when the diameter of the SWCNT is ultra-small its large curvature results in the breakage of these rules. In this work, we studied zigzag (n, 0) SWCNTs with diameters smaller than 0.7 nm using a π orbital-only tight-binding model including anisotropy in the hopping between next-nearest-neighbor sites (ANNNTB). Band overlaps were found in the electronic band structures of the zigzag SWCNTs for n=3, 4, 5, and 6, indicating that they are metals. The reason why the band structures of armchair and chiral SWCNTs are less affected by curvature effects becomes clear with the ANNNTB model, as does the reason why non-degenerate states cause band overlaps of the zigzag SWCNTs for n=3, 4, 5, and 6. Our results show that a π orbital-only tight-binding model is able to describe both the band overlaps and gaps obtained by ab initio calculations for zigzag SWCNTs.  相似文献   

17.
王宝基  李晓华  张利伟  王国东  柯三黄 《中国物理 B》2016,25(10):107101-107101
Ab initio density functional theory calculations are carried out to predict the electronic properties and relative stability of gallium sulfide nanoribbons(Ga_2S_2-NRs) with either zigzag- or armchair-terminated edges. It is found that the electronic properties of the nanoribbons are very sensitive to the edge structure. The zigzag nanoribbons(Ga_2S_2-ZNRs)are ferromagnetic(FM) metallic with spin-polarized edge states regardless of the H-passivation, whereas the bare armchair ones(Ga_2S_2-ANRs) are semiconducting with an indirect band gap. This band gap exhibits an oscillation behavior as the width increases and finally converges to a constant value. Similar behavior is also found in H-saturated Ga_2S_2-ANRs,although the band gap converges to a larger value. The relative stabilities of the bare ANRs and ZNRs are investigated by calculating their binding energies. It is found that for a similar width the ANRs are more stable than the ZNRs, and both are more stable than some Ga_2S_2 nanoclusters with stable configurations.  相似文献   

18.
Examining the band structure of graphite ribbons with a typical edge shapes of armchair or zigzag, we find that minute graphite in a nanometer scale shows a striking contrast in the π electronic states depending on the edge shape. A wide armchair ribbon can reproduces the electronic state of graphite, but a zigzag ribbon shows a pair of partly flat bands which gives a remarkable peak of density of states at the Fermi level. We derive the analytic solution of this peculiar Edge State, disclosing the puzzle of its emergence.  相似文献   

19.
We determine the stability, the geometry, the electronic, and magnetic structure of hydrogen-terminated graphene-nanoribbon edges as a function of the hydrogen content of the environment by means of density functional theory. Antiferromagnetic zigzag ribbons are stable only at extremely low ultravacuum pressures. Under more standard conditions, the most stable structures are the mono- and dihydrogenated armchair edges and a zigzag edge reconstruction with one di- and two monohydrogenated sites. At high hydrogen concentration "bulk" graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution. The stability and the existence of exotic edge electronic states and/or magnetism is rationalized in terms of simple concepts from organic chemistry (Clar's rule).  相似文献   

20.
We have studied the electronic structures of arsenene nanoribbons with different edge passivations by employing first-principle calculations. Furthermore, the effects of the defect in different positions on the transport properties of arsenene nanoribbons are also investigated. We find that the band structures of arsenene nanoribbons are sensitive to the edge passivation. The current-voltage characteristics of unpassivated and O-passivated zigzag arsenene nanoribbons exhibit a negative differential resistance behavior, while such a peculiar phenomenon has not emerged in the unpassivated and O-passivated armchair arsenene nanoribbons. The vacant defects on both top and bottom edges in unpassivated armchair arsenene nanoribbon can make its current-voltage characteristic also present a negative differential resistance behavior. After expanding the areas of the top and bottom defects in unpassivated armchair arsenene nanoribbon, the peak-to-valley ratio of the negative differential resistance behavior can be enlarged obviously, which opens another way for the application of arsenene-based devices with a high switching ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号