首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductance, thermopower, thermal conductance and figure of merit of graphene nanoribbons (GNRs) are investigated using Green function formalism in the linear response regime. The Hamiltonian of GNR is described by the tight-binding approach and the effect of elastic interactions due to the electron–electron interaction or the thermal environmental fluctuations is considered by dephasing approach within the self-consistent Born approximation. The results show that the dephasing process leads to the reduction of the electrical transport of GNRs. Since the edge configuration of GNRs has the significant role in their electronic properties, it is shown that the electrical and thermal transports of the GNRs are decreased by the edge defects while the reduction of thermal conductance is more efficient, therefore, the thermal efficiency of GNRs is increased.  相似文献   

2.
李骏  张振华  王成志  邓小清  范志强 《物理学报》2013,62(5):56103-056103
石墨烯纳米带 (GNRs) 是一种重要的纳米材料, 碳纳米管可看作是GNRs卷曲而成的无缝圆筒. 利用基于密度泛函理论的第一性原理方法, 系统研究了GNRs卷曲变形到不同几何构型时, 其电子特性, 包括能带结构 (特别是带隙) 、态密度、透射谱的变化规律. 结果表明: 无论是锯齿型GNRs (ZGNRs) 或扶手椅型GNRs (AGNRs), 在其卷曲成管之前, 其电子特性对卷曲形变均不敏感, 这意味着GNRs的电子结构及输运特性有较强地抵抗卷曲变形的能力. 当GNRs 卷曲成管后, ZGNRs和AGNRs表现出完全不同的性质, ZGNRs几乎保持金属性不变或变为准金属; 但AGNRs的电子特性有较大的变化, 出现不同带隙半导体、准金属之间的转变, 这也许密切关系到碳纳米管管口周长方向上的周期性边界条件及量子禁锢的改变. 这些研究对于了解GNRs电子特性的卷曲效应、以及GNRs与碳纳米管电子特性的关系 (结构与特性的关系) 有重要意义. 关键词: 石墨烯纳米带 卷曲效应 电子特性 密度泛函理论  相似文献   

3.
We have investigated the electronic and magnetic properties of copper-family-element (CFE) atom adsorbed graphene nanoribbons (GNRs) with zigzag edges using first-principles calculations based on density functional theory. We found that CFE atoms energetically prefer to be adsorbed at the edges of nanoribbons. Charges are transferred between the CFE atom and carbon atoms at the edge, which reduce the local magnetic moment of carbon atoms in the vicinity of adsorption site and change the electronic structure of GNRs. As a result, Cu adsorbed zigzag GNR is a semiconductor with energy band gap of 0.88 eV in beta-spin and energy gap of 0.22 eV in alpha-spin, while Ag adsorbed zigzag GNR and Au adsorbed zigzag GNR are both half-metallic with the energy gaps of 0.68 eV and 0.63 eV in beta-spin, respectively. These results show that CFE atom adsorbed zigzag GNRs can be applied in nanoelectronics and spintronics.  相似文献   

4.
The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green?s function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC?s parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR.  相似文献   

5.
Peculiar vibrational modes of graphene nanoribbons (GNRs) with topological line defects were presented. We find that phonon dispersion relations of the topological defective GNRs are more similar to those of perfect armchair-edge GNR than to zigzag-edge GNR in spite of their zigzag edge. All vibrational modes at Γ point are assigned in detail by analyzing their eigenvectors and are presented by video. Three types of characteristic vibrational modes, namely, localized vibrational modes in defect sites, edges, and breathing modes, are observed. Five localized vibrational modes near the defect sites are found to be robust against the width of the topological line-defective GNR. The Raman D’ band just originates from one localized mode, 1622 cm-1. The vibrational mode is sensitive to symmetry. The edge modes are related with structural symmetry but not with widths. Two edge modes are asymmetrical and only one is symmetrical. The breathing modes are inversely proportional to the width for wide-defect GNRs, and inversely proportional to the square root of the width for narrow-defect GNRs. The breathing mode frequencies of defective GNRs are slightly higher than those of perfect GNRs. These vibrational modes may be useful in the manipulation of thermal conductance and implementation of single phonon storage.  相似文献   

6.
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.  相似文献   

7.
Doping of semiconductor is necessary for various device applications. Exploiting chemistry at its reactive edges was shown to be an effective way to dope an atomically thin graphene nanoribbon (GNR) for realizing new devices in recent experiments. The carrier mobility limited by edge doping is studied as a function of the GNR width, doping density, and carrier density by using ab initio density functional and parameterized tight binding simulations combined with the non-equilibrium Green's function formalism for quantum transport. The results indicate that for GNRs wider than about 4 nm, the mobility scales approximately linearly with the GNR width, inversely proportional to the edge doping concentration and decreases for an increasing carrier density. For narrower GNRs, dependence of the mobility on the GNR width and carrier density can be qualitatively different.  相似文献   

8.
We study theoretically the electronic and transport property for an armchair-edge graphene nanoribbon (GNR.) with 12 and 11 transversal atomic lines, respectively. The ONR. is irradiated under an external longitudinal polarized high-frequency electromagnetic field at low temperatures. Within the framework of linear response theory in the perturbative regime, we examine the joint density of states and the real conductance of the system. It is demonstrated that, by numerical examples, some new photon-assisted intersubband transitions over a certain range of field frequency exist with different selection rules from those of both zigzag-edge GNR. and single-walled carbon nanotube. This opto-electron property dependence of armchair-edge GNR. on field frequency may be used to detect the high-frequency electromagnetic irradiation.  相似文献   

9.
First-principles density-functional calculations are performed to investigate the thermal transport properties in graphene nanoribbons (GNRs). The dimensional crossover of thermal conductance from one to two dimensions (2D) is clearly demonstrated with increasing ribbon width. The thermal conductance of GNRs of a few nanometers width already exhibits an approximate low-temperature dependence of T(1.5), like that of 2D graphene sheets which is attributed to the quadratic nature of the dispersion relation for the out-of-plane acoustic phonon modes. Using a zone-folding method, we heuristically derive the dimensional crossover of thermal conductance with the increase of ribbon width. Combining our calculations with the experimental phonon mean-free path, some typical values of thermal conductivity at room temperature are estimated for GNRs and for 2D graphene sheet. Our findings clarify the issue of the low-temperature dependence of thermal transport in GNRs and suggest a calibration range of thermal conductivity for experimental measurements in graphene-based materials.  相似文献   

10.
In this article we study the effect of external magnetic field and electric field on spin transport in bilayer armchair graphene nanoribbons (GNR) by employing semiclassical Monte Carlo approach. We include D'yakonov-Perel' (DP) relaxation due to structural inversion asymmetry (Rashba spin-orbit coupling) and Elliott-Yafet (EY) relaxation to model spin dephasing. In the model we neglect the effect of local magnetic moments due to adatoms and vacancies. We have considered injection polarization along z-direction perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. To the best of our knowledge there has been no theoretical investigation of the effects of external magnetic field on spin transport in graphene nanoribbons. This theoretical investigation is important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene GNRs.  相似文献   

11.
Thermal transport properties are investigated for out-of-plane phonon modes(FPMs) and in-plane phonon modes(IPMs) in double-stub graphene nanoribbons(GNRs). The results show that the quantized thermal conductance plateau of FPMs is narrower and more easily broken by the double-stub structure. In the straight GNRs, the thermal conductance of FPMs is higher in the low temperature region due to there being less cut-off frequency and more low-frequency excited modes. In contrast, the thermal conductance of IPMs is higher in the high temperature region because of the wider phonon energy spectrum. Furthermore, the thermal transport of two types of phonon modes can be modulated by the double-stub GNRs, the thermal conductance of FPMs is less than that of IPMs in the low temperatures, but it dominates the contribution to the total thermal conductance in the high temperatures. The modulated thermal conductance can provide a guideline for designing high-performance thermal or thermoelectric nanodevices based on graphene.  相似文献   

12.
The ability of photon to thermal conversion on wet chemically synthesized gold nanorods (GNRs) is a unique advantage to explore specific local heating. In this study, we demonstrate the thermal response of a single patterned GNR cluster in aqueous solution under near infrared irradiation. To improve the properties of GNRs, such as solubility, we describe the initiated chemical vapor deposition method by the interaction of poly(2-hydroxyethyl methacrylate). A laser-induced fluorescence technique was utilized as a potential and non-intrusive way to measure the temperature field in and around the highly localized GNR cluster. The correlation between fluorescence intensities and temperature was investigated with two dyes by controlling the near infrared laser intensities to heat up the GNRs. Using this technique, we observed highly localized temperature rise in the GNR cluster and heat transfer to the surrounding medium during the laser irradiation.  相似文献   

13.
BN链掺杂的石墨烯纳米带的电学及磁学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王鼎  张振华  邓小清  范志强 《物理学报》2013,62(20):207101-207101
基于密度泛函理论第一性原理系统研究了BN链掺杂石墨烯纳米带(GNRs)的电学及磁学特性, 对锯齿型石墨烯纳米带(ZGNRs)分非磁态(NM)、反铁磁态(AFM)及铁磁性(FM)三种情况分别进行考虑. 重点研究了单个BN链掺杂的位置效应. 计算发现: BN链掺杂扶手椅型石墨烯纳米带(AGNRs) 能使带隙增加, 不同位置的掺杂, 能使其成为带隙丰富的半导体. BN链掺杂非磁态ZGNR的不同位置, 其金属性均降低, 并能出现准金属的情况; BN链掺杂反铁磁态ZGNR, 能使其从半导体变为金属或半金属(half-metal), 这取决于掺杂的位置; BN链掺杂铁磁态ZGNR, 其金属性保持不变, 与掺杂位置无关. 这些结果表明: BN链掺杂能有效调控石墨烯纳米带的电子结构, 并形成丰富的电学及磁学特性, 这对于发展各种类型的石墨烯基纳米电子器件有重要意义. 关键词: 石墨烯纳米带 BN链掺杂 输运性质 自旋极化  相似文献   

14.
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5-3.0 eV for ribbons of width 2.4-0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.  相似文献   

15.
《中国物理 B》2021,30(7):77306-077306
The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs) with atomically precise widths, edge terminations and dopants, which facilitate the tunning of their electronic structures. Here, we report the synthesis of novel sulfur-doped cove-edged GNRs(S-CGNRs) on Au(111) from a specifically designed precursor containing thiophene rings. Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation, which further result in crosslinked branched structures. Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 e V. First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 e V,which is evidently smaller than that of an undoped cove-edged GNR(1.7 e V), suggesting effective tuning of the bandgap by introducing sulfur atoms. Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs. The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures.  相似文献   

16.
We studied the specific heat of graphene nanoribbons (GNRs) using an extended force constant model. We found that at low temperature, the specific heat decreases, and its variation with temperature increases with increasing GNR width. However, the specific heat increases with increasing GNR width after crossing a chaotic region. Free boundary conditions, -CHOH-terminated and armchair-edge-induced phonon nondegeneracy, shift and distortion and localized vibrational modes significantly influence GNR specific heat compared with periodic boundary conditions and bare and zigzag edges in GNRs. Finally, we found a uniform expression for specific heat vs. width at every temperature except for the chaotic region.  相似文献   

17.
The interaction of light with a single gold nanorod (GNR) depends strongly on the polarization and wavelength of the light. For isolated GNRs, the maximum of the polarization (wavelength)‐dependent linear and nonlinear absorption appear at the same excitation polarization (wavelength). Here, it is demonstrated that these relationships can be manipulated in a GNR assembly composed of randomly distributed and oriented GNRs by controlling the plasmonic coupling strength between GNRs. It is revealed that the strongly localized modes resulting from the plasmonic coupling of GNRs play a crucial role in determining these relationships. For a GNR tetramer, it is shown by numerical simulation that the maximum two‐photon absorption achieved at a particular polarization can be switched to the minimum absorption and vice versa by controlling the coupling strength. More importantly, it is demonstrated both numerically and experimentally that the two‐photon‐absorption peak of a GNR assembly can be made to be different from its single‐photon‐absorption peak by increasing the coupling strength. Both properties are distinct from previous experimental observations. Our findings provide a useful guideline for engineering the interaction of light with complex plasmonic systems.

  相似文献   


18.
Electronic properties of multi-defected zigzag single-walled carbon nanotubes are investigated by use of the tight-binding Green's function method. The Stone-Wales defects and the vacancies are considered. We find that the conductance sensitively depends on the realistic defect configurations for the metallic zigzag carbon nanotubes. Interestingly, the electronic transport properties of the nanotubes with three vacancies can be considered as the sum effect of two double-vacancies, while those with Stone-Wal...  相似文献   

19.
In this work, we study quantum transport properties of a defective graphene nanoribbon (DGNR) attached to two semi-infinite metallic armchair graphene nanoribbon (AGNR) leads. A line of defects is considered in the GNR device with different configurations, which affects on the energy spectrum of the system. The calculations are based on the tight-binding model and Green’s function method, in which localization length of the system is investigated, numerically. By controlling disorder concentration, the extended states can be separated from the localized states in the system. Our results may have important applications for building blocks in the nano-electronic devices based on GNRs.  相似文献   

20.
采用第一性原理和非平衡格林函数方法,系统研究了含氮空位缺陷锯齿状石墨烯纳米条带的自旋极化输运特性.理论计算结果表明边界非对称的这类石墨纳米条带的基态具有铁磁性,由其构建的分子结中负微分电阻效应具有鲁棒性,是电极局域的态密度及依赖偏压的散射区-电极耦合作用结果.此外,在特定偏压区域还观察到几乎完美的自旋过滤效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号